Global

Methods

_analyzeQuery()

Analyze query to determine search characteristics

.

Analyze query to determine search characteristics

Source:

_buildContext()

Build context for the LLM from conversation history and relevant memories

.

Build context for the LLM from conversation history and relevant memories

Source:

_buildFilterClauses(filters) → {string}

Build SPARQL filter clauses from ZPT pan parameters

.

Build SPARQL filter clauses from ZPT pan parameters

Parameters:
Name Type Description
filters Object

Filter configuration (domains, keywords, temporal, etc.)

Source:
Returns:

SPARQL filter clauses

Type
string

_calculateCosineSimilarity(vecA, vecB) → {number}

Calculate cosine similarity between two vectors

.

Calculate cosine similarity between two vectors

Parameters:
Name Type Description
vecA Array.<number>

First vector

vecB Array.<number>

Second vector

Source:
Returns:

Similarity score between 0 and 1

Type
number

_calculateFinalScore()

Calculate final score based on query analysis and result characteristics

.

Calculate final score based on query analysis and result characteristics

Source:

(async) _callChat()

Call chat method using the appropriate provider interface

.

Call chat method using the appropriate provider interface

Source:

(async) _callCompletion()

Call completion method using the appropriate provider interface

.

Call completion method using the appropriate provider interface

Source:

_createConversation()

Create a new conversation

.

Create a new conversation

Source:

(async) _createCorpusInterface()

Create a basic corpus interface for ZPT components

.

Create a basic corpus interface for ZPT components

Source:

_determineStrategy()

Determine optimal search strategy based on query analysis

.

Determine optimal search strategy based on query analysis

Source:

(protected) _emitMetric()

Emit a metric event

.

Emit a metric event

Source:

_estimateServiceRelevance()

Helper methods

.

Helper methods

Source:

_estimateTokens()

Estimate tokens for corpuscles (simple heuristic)

.

Estimate tokens for corpuscles (simple heuristic)

Source:

(async) _executeNavigationFallback()

Fallback navigation implementation when NavigationEndpoint is not available

.

Fallback navigation implementation when NavigationEndpoint is not available

Source:

(async) _executeParallelSearches()

Execute searches across all services in parallel

.

Execute searches across all services in parallel

Source:

(async) _executeSequentialSearches()

Execute searches across services sequentially

.

Execute searches across services sequentially

Source:

(async) _executeServiceSearch()

Execute search on a specific service

.

Execute search on a specific service

Source:

_formatEntity()

Format entity for API response

.

Format entity for API response

Source:

_formatRelationship()

Format relationship for API response

.

Format relationship for API response

Source:

_formatSemanticUnit()

Format semantic unit for API response

.

Format semantic unit for API response

Source:

_getConversation()

Get or create a conversation

.

Get or create a conversation

Source:

(async) _initializeZPTComponents()

Initialize ZPT-specific components

.

Initialize ZPT-specific components

Source:

_normalizeResults()

Normalize results from different services to a common format

.

Normalize results from different services to a common format

Source:

_parseJsonValue(jsonStr) → {any}

Parse JSON value safely, returning empty object/array on failure

.

Parse JSON value safely, returning empty object/array on failure

Parameters:
Name Type Description
jsonStr string

JSON string to parse

Source:
Returns:

Parsed value or default

Type
any

_parseQueryResults(result, zoomLevel) → {Array.<Object>}

Parse SPARQL query results into ZPT corpuscle format

.

Parse SPARQL query results into ZPT corpuscle format

Parameters:
Name Type Description
result Object

SPARQL query result

zoomLevel string

The zoom level for result interpretation

Source:
Returns:

Parsed corpuscles

Type
Array.<Object>

_rankAndMergeResults()

Rank and merge results from multiple services

.

Rank and merge results from multiple services

Source:

_sanitizeParams()

Sanitize parameters for logging (remove sensitive data)

.

Sanitize parameters for logging (remove sensitive data)

Source:

(async) _searchEntities()

Search entities by name/type

.

Search entities by name/type

Source:

(async) _searchSemantic()

Semantic search using embeddings

.

Semantic search using embeddings

Source:

_selectServices()

Select services based on query analysis

.

Select services based on query analysis

Source:

(async) _serializeTriples()

Serialize triples to specified format

.

Serialize triples to specified format

Source:

_simpleMergeResults()

Simple merge without ranking (fallback)

.

Simple merge without ranking (fallback)

Source:

_triplesToJSON()

Convert triples to JSON format

.

Convert triples to JSON format

Source:

_updateAverage()

Update running average

.

Update running average

Source:

(protected) _validateParams()

Validate operation parameters

.

Validate operation parameters

Source:

(async) adaptiveChunking()

Adaptive chunking strategy

.

Adaptive chunking strategy

Source:

addAltLabel(label, langopt)

Add SKOS alternative label

.

Add SKOS alternative label

Parameters:
Name Type Attributes Default Description
label string

Alternative label

lang string <optional>
'en'

Language tag

Source:

addAlternativeName(altName, langopt)

Add an alternative label/name for this entity

.

Add an alternative label/name for this entity

Parameters:
Name Type Attributes Default Description
altName string

Alternative name

lang string <optional>
'en'

Language tag

Source:

addAttribute(content, subTypeopt)

Add an attribute to this entity

.

Add an attribute to this entity

Parameters:
Name Type Attributes Description
content string

Attribute content

subType string <optional>

Attribute sub-type

Source:

addChunkOverlap()

Add overlap between consecutive chunks

.

Add overlap between consecutive chunks

Source:

addChunkRelationships()

Add relationships between chunks

.

Add relationships between chunks

Source:

addContent(subject, content)

Add content property to a resource

.

Add content property to a resource

Parameters:
Name Type Description
subject NamedNode

Resource

content string

Text content

Source:

addEntityConnection(entity, relevanceScoreopt)

Add a connection to an entity that this unit mentions

.

Add a connection to an entity that this unit mentions

Parameters:
Name Type Attributes Description
entity Entity | NamedNode | string

Entity reference

relevanceScore number <optional>

Relevance score (0-1)

Source:

addEntityMention(entityURI, relevanceopt)

Add an entity mention to this semantic unit as an RDF triple

.

Add an entity mention to this semantic unit as an RDF triple

Parameters:
Name Type Attributes Default Description
entityURI string

The URI of the mentioned entity

relevance number <optional>
1.0

Optional relevance/confidence score

Source:

addEvidence(evidence)

Add supporting evidence for this attribute

.

Add supporting evidence for this attribute

Parameters:
Name Type Description
evidence SemanticUnit | NamedNode | string

Evidence source (e.g., semantic unit)

Source:

addEvidence(evidence)

Add evidence or support for this relationship

.

Add evidence or support for this relationship

Parameters:
Name Type Description
evidence RDFElement | NamedNode | string

Evidence source (e.g., semantic unit)

Source:

addHypothesisToRDF(hypothesisUnit, entities, relationships, targetDataset) → {number}

Add hypothesis and related data to RDF dataset with ragno:maybe property

.

Add hypothesis and related data to RDF dataset with ragno:maybe property

Parameters:
Name Type Description
hypothesisUnit SemanticUnit

Hypothesis semantic unit

entities Array

Extracted entities

relationships Array

Created relationships

targetDataset Dataset

Target RDF dataset

Source:
Returns:

Number of triples added

Type
number

addInstructions()

Instruction and context enhancement

.

Instruction and context enhancement

Source:

addKeyword(keyword)

Add a keyword/tag to this attribute

.

Add a keyword/tag to this attribute

Parameters:
Name Type Description
keyword string

Keyword or tag

Source:

addLabel(subject, label, langopt)

Add SKOS preferred label

.

Add SKOS preferred label

Parameters:
Name Type Attributes Default Description
subject NamedNode

Resource

label string

Label text

lang string <optional>
'en'

Language tag

Source:

addNamespace(prefix, namespaceURI)

Add a custom namespace

.

Add a custom namespace

Parameters:
Name Type Description
prefix string

Namespace prefix

namespaceURI string

Namespace URI

Source:

addNode(uri, embedding, metadata) → {number}

Add a node with its embedding to the index

.

Add a node with its embedding to the index

Parameters:
Name Type Description
uri string

Node URI

embedding Array.<number>

Vector embedding

metadata Object

Node metadata

Source:
Returns:

Node ID in index

Type
number

addNodeToIndex(uri, embedding, metadataopt) → {number}

Add single node to vector index

.

Add single node to vector index

Parameters:
Name Type Attributes Description
uri string

Node URI

embedding Array

Vector embedding

metadata Object <optional>

Node metadata

Source:
Returns:

Node ID

Type
number

addNodesBatch(nodes) → {Array.<number>}

Add multiple nodes in batch

.

Add multiple nodes in batch

Parameters:
Name Type Description
nodes Array

Array of {uri, embedding, metadata} objects

Source:
Returns:

Array of node IDs

Type
Array.<number>

addNodesToIndex(nodes) → {Array}

Add nodes to vector index

.

Add nodes to vector index

Parameters:
Name Type Description
nodes Array

Array of {uri, embedding, metadata} objects

Source:
Returns:

Array of node IDs added

Type
Array

addProvenance(sourceURI)

Add provenance information

.

Add provenance information

Parameters:
Name Type Description
sourceURI string

Source document/entity URI

Source:

addRelationshipTo(targetEntity, description, weightopt, relationshipTypeopt) → {Object}

Add a relationship to another entity

.

Add a relationship to another entity

Parameters:
Name Type Attributes Default Description
targetEntity Entity | NamedNode | string

Target entity

description string

Relationship description

weight number <optional>
1.0

Relationship weight

relationshipType string <optional>

Type of relationship

Source:
Returns:

Relationship information

Type
Object

addSource(source)

Add a source document to this entity as an RDF triple

.

Add a source document to this entity as an RDF triple

Parameters:
Name Type Description
source string

The source document URI or string

Source:

addToContext()

Add interaction to context buffer with similarity score

.

Add interaction to context buffer with similarity score

Source:

addTriple(subject, predicate, object, graphopt)

Add a triple to the dataset

.

Add a triple to the dataset

Parameters:
Name Type Attributes Description
subject NamedNode

Subject node

predicate NamedNode

Predicate node

object NamedNode | Literal

Object node or literal

graph NamedNode <optional>

Optional graph context

Source:

addTriple(predicate, object, graphopt)

Add a triple to the dataset with this element as subject

.

Add a triple to the dataset with this element as subject

Parameters:
Name Type Attributes Description
predicate NamedNode

Predicate

object NamedNode | Literal

Object

graph NamedNode <optional>

Optional graph context

Source:

addType(subject, type)

Add type declaration for a resource

.

Add type declaration for a resource

Parameters:
Name Type Description
subject NamedNode

Resource to type

type NamedNode

RDF type (e.g., ragno:Entity)

Source:

addType(type)

Add RDF type to this element

.

Add RDF type to this element

Parameters:
Name Type Description
type NamedNode

RDF type

Source:

addUnitConnection(unit, relationTypeopt, weightopt)

Add a connection to another semantic unit

.

Add a connection to another semantic unit

Parameters:
Name Type Attributes Description
unit SemanticUnit | NamedNode | string

Unit reference

relationType string <optional>

Type of relationship

weight number <optional>

Connection weight

Source:

addZoom(selection, options) → {Object}

Add zoom behavior to a D3 selection

.

Add zoom behavior to a D3 selection

Parameters:
Name Type Description
selection Object

D3 selection

options Object

Zoom options

Source:
Returns:

Zoom behavior

Type
Object

advancedEstimation(text, tokenizerName) → {Object}

Advanced token estimation with tokenizer-specific logic

.

Advanced token estimation with tokenizer-specific logic

Parameters:
Name Type Description
text string

Text to estimate

tokenizerName string

Tokenizer name

Source:
Returns:

Estimated token count

Type
Object

aggregateCommunities(graphData, llmHandler, optionsopt) → {Promise.<{communities: Array.<CommunityElement>, attributes: Array.<Attribute>, dataset: Dataset, statistics: Object}>}

Detect communities and generate comprehensive summaries using Leiden clustering

.

Detect communities and generate comprehensive summaries using Leiden clustering

Parameters:
Name Type Attributes Description
graphData Object

Graph data with RDF dataset

llmHandler Object

LLM handler instance

options Object <optional>

Community detection options

Source:
Returns:
Type
Promise.<{communities: Array.<CommunityElement>, attributes: Array.<Attribute>, dataset: Dataset, statistics: Object}>

aggregationPhase(graph, nodeToCommId) → {Object}

Aggregation phase to create meta-graph

.

Aggregation phase to create meta-graph

Parameters:
Name Type Description
graph Object

Graph representation

nodeToCommId Map

Current node to community mapping

Source:
Returns:

Aggregated graph

Type
Object

analyzeConfidenceDistribution(entities) → {Object}

Analyze confidence distribution

.

Analyze confidence distribution

Parameters:
Name Type Description
entities Array

Array of entities with confidence scores

Source:
Returns:

Confidence analysis

Type
Object

analyzeContentType()

Analysis and insight extraction

.

Analysis and insight extraction

Source:

(async) analyzeQuery()

Analyze query operation

.

Analyze query operation

Source:

analyzeTextStructure()

Analyze text structure for hierarchical chunking

.

Analyze text structure for hierarchical chunking

Source:

applyContentAdjustments()

Apply content-type specific adjustments

.

Apply content-type specific adjustments

Source:

applyDiversityFilter()

Apply diversity filtering to reduce redundancy

.

Apply diversity filtering to reduce redundancy

Source:

applyEntityFilter()

Apply entity-based domain filtering

.

Apply entity-based domain filtering

Source:

applyEntityFilters(entities, filters) → {Array}

Apply filters to entity data

.

Apply filters to entity data

Parameters:
Name Type Description
entities Array

Array of entities

filters Object

Filter criteria

Source:
Returns:

Filtered entities

Type
Array

applyFilters(panParams, queryContext) → {Object}

Apply all pan filters to a selection query

.

Apply all pan filters to a selection query

Parameters:
Name Type Description
panParams Object

Normalized pan parameters

queryContext Object

Query context and constraints

Source:
Returns:

Enhanced query with domain filters

Type
Object

applyGeographicFilter()

Apply geographic domain filtering

.

Apply geographic domain filtering

Source:

applyPrivacyFilters()

Apply privacy filters to metadata

.

Apply privacy filters to metadata

Source:

applyTemporalFilter()

Apply temporal domain filtering

.

Apply temporal domain filtering

Source:

applyTokenizerAdjustments()

Apply tokenizer-specific adjustments

.

Apply tokenizer-specific adjustments

Source:

applyTopicFilter()

Apply topic-based domain filtering

.

Apply topic-based domain filtering

Source:

(async) attemptRecovery()

Attempt error recovery

.

Attempt error recovery

Source:

augmentWithAttributes(graphData, llmHandler, optionsopt) → {Promise.<{attributes: Array.<Attribute>, dataset: Dataset, statistics: Object}>}

Augment entities with comprehensive attributes using graph analysis and LLM

.

Augment entities with comprehensive attributes using graph analysis and LLM

Parameters:
Name Type Attributes Description
graphData Object

Decomposition results with RDF dataset

llmHandler Object

LLM handler instance

options Object <optional>

Augmentation options

Source:
Returns:
Type
Promise.<{attributes: Array.<Attribute>, dataset: Dataset, statistics: Object}>

balanceChunkSizes()

Balance chunk sizes for more uniform distribution

.

Balance chunk sizes for more uniform distribution

Source:

(async) batchCountTokens(texts, tokenizer) → {Promise.<Array.<Object>>}

Count tokens for multiple texts in batch

.

Count tokens for multiple texts in batch

Parameters:
Name Type Default Description
texts Array.<string>

Array of texts to count

tokenizer string null

Tokenizer name

Source:
Returns:

Array of token counts

Type
Promise.<Array.<Object>>

buildAggregationQuery()

Build aggregation query for community-level zoom

.

Build aggregation query for community-level zoom

Source:

buildBatchConceptInsert()

Build SPARQL INSERT for batch concept creation

.

Build SPARQL INSERT for batch concept creation

Source:

buildBatchFrequencyUpdate()

Build SPARQL UPDATE for batch frequency updates

.

Build SPARQL UPDATE for batch frequency updates

Source:

buildBatchRelationshipUpdate()

Build SPARQL UPDATE for batch relationship updates

.

Build SPARQL UPDATE for batch relationship updates

Source:

buildCacheKey()

Build cache key for query results

.

Build cache key for query results

Source:

buildCommunities(nodeToCommId) → {Map}

Build communities map from node assignments

.

Build communities map from node assignments

Parameters:
Name Type Description
nodeToCommId Map

Node to community mapping

Source:
Returns:

Community ID to nodes mapping

Type
Map

buildCompletenessFunction()

Build completeness scoring function

.

Build completeness scoring function

Source:

buildConnectivityFunction()

Build connectivity scoring function

.

Build connectivity scoring function

Source:

buildConstraints()

Build hard constraints

.

Build hard constraints

Source:

buildContext()

Build complete context including history and current prompt

.

Build complete context including history and current prompt

Source:

buildCriteria(normalizedParams) → {Object}

Build complete selection criteria from normalized parameters

.

Build complete selection criteria from normalized parameters

Parameters:
Name Type Description
normalizedParams Object

Normalized ZPT parameters

Source:
Returns:

Selection criteria configuration

Type
Object

buildDiversityFunction()

Build diversity scoring function

.

Build diversity scoring function

Source:

buildEntityDetailsQuery(entityUri) → {string}

Build SPARQL query for entity details

.

Build SPARQL query for entity details

Parameters:
Name Type Description
entityUri string

Entity URI

Source:
Returns:

SPARQL query

Type
string

buildEntityExtractionPrompt(query) → {string}

Build entity extraction prompt for LLM

.

Build entity extraction prompt for LLM

Parameters:
Name Type Description
query string

User query

Source:
Returns:

Prompt for entity extraction

Type
string

buildEntityFilter()

Build entity filter clause

.

Build entity filter clause

Source:

buildEntityRule()

Build entity-based selection rule

.

Build entity-based selection rule

Source:

buildExactMatchQuery(entities, types) → {string}

Build SPARQL query for exact matching

.

Build SPARQL query for exact matching

Parameters:
Name Type Description
entities Array

Entity names to search for

types Array

RDF types to include

Source:
Returns:

SPARQL query

Type
string

buildFilters()

Build filter clauses from pan parameters

.

Build filter clauses from pan parameters

Source:

buildFormattingContext()

Build comprehensive formatting context

.

Build comprehensive formatting context

Source:

buildGeographicFilter()

Build geographic filter clause

.

Build geographic filter clause

Source:

buildGeographicRule()

Build geographic selection rule

.

Build geographic selection rule

Source:

(async) buildGraphFromRDF(dataset, optionsopt) → {Object}

Build a graph from an RDF dataset (delegates to GraphAnalytics)

.

Build a graph from an RDF dataset (delegates to GraphAnalytics)

Parameters:
Name Type Attributes Description
dataset Dataset

RDF-Ext dataset

options Object <optional>

Graph construction options

Source:
Returns:

Graph representation

Type
Object

buildGraphFromRDF(dataset, optionsopt) → {Object}

Build adjacency representation from RDF dataset

.

Build adjacency representation from RDF dataset

Parameters:
Name Type Attributes Description
dataset Dataset

RDF-Ext dataset

options Object <optional>

Graph construction options

Source:
Returns:

Graph representation with nodes and edges

Type
Object

buildGraphTraversalQuery(entityUris) → {string}

Build SPARQL query for graph traversal

.

Build SPARQL query for graph traversal

Parameters:
Name Type Description
entityUris Array

Starting entity URIs

Source:
Returns:

SPARQL query for building graph

Type
string

buildLimit()

Build LIMIT clause based on transform parameters

.

Build LIMIT clause based on transform parameters

Source:

buildOptimizationRules()

Build optimization rules for performance

.

Build optimization rules for performance

Source:

buildOrderBy()

Build ORDER BY clause based on tilt representation

.

Build ORDER BY clause based on tilt representation

Source:

buildPrimaryRules()

Build primary selection rules (must-have criteria)

.

Build primary selection rules (must-have criteria)

Source:

buildQuery(normalizedParams) → {Object}

Build complete SPARQL query from normalized parameters

.

Build complete SPARQL query from normalized parameters

Parameters:
Name Type Description
normalizedParams Object

Normalized ZPT parameters

Source:
Returns:

Query configuration

Type
Object

buildRecencyFunction()

Build recency scoring function

.

Build recency scoring function

Source:

buildRelevanceFunction()

Build relevance scoring function

.

Build relevance scoring function

Source:

buildScoringRules()

Build scoring and ranking rules

.

Build scoring and ranking rules

Source:

buildSecondaryRules()

Build secondary selection rules (preference-based)

.

Build secondary selection rules (preference-based)

Source:

buildSelectClause(zoomLevel, tiltRepresentation) → {string}

Build zoom-specific SPARQL SELECT clause

.

Build zoom-specific SPARQL SELECT clause

Parameters:
Name Type Description
zoomLevel string

The zoom level

tiltRepresentation string

The tilt representation

Source:
Returns:

SPARQL SELECT clause

Type
string

buildSelectionResult()

Build final selection result object

.

Build final selection result object

Source:

buildSimilarityQuery()

Build similarity search query for embedding-based tilt

.

Build similarity search query for embedding-based tilt

Source:

buildTemporalFilter()

Build temporal filter clause

.

Build temporal filter clause

Source:

buildTemporalRule()

Build temporal selection rule

.

Build temporal selection rule

Source:

buildTopicFilter()

Build topic filter clause

.

Build topic filter clause

Source:

buildTopicRule()

Build topic-based selection rule

.

Build topic-based selection rule

Source:

buildTransformationContext()

Build comprehensive transformation context

.

Build comprehensive transformation context

Source:

buildTransitionMatrix(graph) → {Map}

Build transition matrix from graph adjacency

.

Build transition matrix from graph adjacency

Parameters:
Name Type Description
graph Object

Graph representation

Source:
Returns:

Transition probabilities

Type
Map

buildTypeFilter(zoomLevel, includePrimary, includeSecondary) → {string}

Build type filter clause for SPARQL queries

.

Build type filter clause for SPARQL queries

Parameters:
Name Type Default Description
zoomLevel string

The zoom level

includePrimary boolean true

Include primary types (default: true)

includeSecondary boolean false

Include secondary types (default: false)

Source:
Returns:

SPARQL type filter clause

Type
string

calculateAttributeConfidence(context, content, options) → {number}

Calculate confidence score for generated attribute

.

Calculate confidence score for generated attribute

Parameters:
Name Type Description
context Object

Entity context

content string

Generated content

options Object

Calculation options

Source:
Returns:

Confidence score 0-1

Type
number

calculateCacheHitRate() → {number}

Calculate cache hit rate

.

Calculate cache hit rate

Source:
Returns:

Cache hit rate percentage

Type
number

calculateCentroid()

Utility methods

.

Utility methods

Source:

calculateChunkSize()

Calculate chunk size based on strategy

.

Calculate chunk size based on strategy

Source:

calculateClusterCentroid(memberIndices) → {Array}

Calculate cluster centroid

.

Calculate cluster centroid

Parameters:
Name Type Description
memberIndices Array

Array of member node indices

Source:
Returns:

Centroid vector

Type
Array

calculateCommunityCohesion(community, graph) → {number}

Calculate cohesion score for a community

.

Calculate cohesion score for a community

Parameters:
Name Type Description
community Object

Community object

graph Object

Graph object

Source:
Returns:

Cohesion score 0-1

Type
number

calculateComplexity()

Calculate parameter complexity score

.

Calculate parameter complexity score

Source:

calculateConfidence()

Quality calculation methods

.

Quality calculation methods

Source:

calculateConfidence()

Calculate confidence in estimation

.

Calculate confidence in estimation

Source:

calculateContentSimilarity()

Calculate content similarity between corpuscles

.

Calculate content similarity between corpuscles

Source:

calculateCosineSimilarity()

Calculate cosine similarity between embeddings

.

Calculate cosine similarity between embeddings

Source:

calculateDistance(vector1, vector2) → {number}

Calculate distance between two vectors

.

Calculate distance between two vectors

Parameters:
Name Type Description
vector1 Array

First vector

vector2 Array

Second vector

Source:
Returns:

Distance value

Type
number

calculateDistance(coords1, coords2) → {number}

Calculate distance between two nodes on the map

.

Calculate distance between two nodes on the map

Parameters:
Name Type Description
coords1 Array

[x, y] coordinates of first node

coords2 Array

[x, y] coordinates of second node

Source:
Returns:

Distance between nodes

Type
number

calculateHexagonalDistance(coords1, coords2) → {number}

Calculate distance in hexagonal topology

.

Calculate distance in hexagonal topology

Parameters:
Name Type Description
coords1 Array

[x, y] coordinates of first node

coords2 Array

[x, y] coordinates of second node

Source:
Returns:

Hexagonal distance

Type
number

calculateLearningRate(iteration) → {number}

Calculate learning rate for current iteration

.

Calculate learning rate for current iteration

Parameters:
Name Type Description
iteration number

Current iteration

Source:
Returns:

Learning rate

Type
number

calculateMapDistance(coords1, coords2) → {number}

Calculate distance between two points on the map

.

Calculate distance between two points on the map

Parameters:
Name Type Description
coords1 Array

[x, y] coordinates of first point

coords2 Array

[x, y] coordinates of second point

Source:
Returns:

Distance on the map

Type
number

calculateModularity(graph, nodeToCommId) → {number}

Calculate modularity of current community structure

.

Calculate modularity of current community structure

Parameters:
Name Type Description
graph Object

Graph representation

nodeToCommId Map

Community assignment

Source:
Returns:

Modularity value

Type
number

calculateModularityGain(graph, node, fromComm, toComm, nodeToCommId) → {number}

Calculate modularity gain for moving a node between communities

.

Calculate modularity gain for moving a node between communities

Parameters:
Name Type Description
graph Object

Graph representation

node string

Node to move

fromComm number

Source community

toComm number

Target community

nodeToCommId Map

Current community assignment

Source:
Returns:

Modularity gain

Type
number

calculateNeighborhoodRadius(iteration) → {number}

Calculate neighborhood radius for current iteration

.

Calculate neighborhood radius for current iteration

Parameters:
Name Type Description
iteration number

Current iteration

Source:
Returns:

Neighborhood radius

Type
number

calculateNodeSimilarity(index1, index2) → {number}

Calculate similarity between two nodes

.

Calculate similarity between two nodes

Parameters:
Name Type Description
index1 number

First node index

index2 number

Second node index

Source:
Returns:

Similarity score

Type
number

(async) calculateQualityMetrics(vsomCore, trainingData, iteration)

Calculate training quality metrics

.

Calculate training quality metrics

Parameters:
Name Type Description
vsomCore Object

VSOM core algorithm instance

trainingData Array

Training data

iteration number

Current iteration

Source:

calculateQuantizationError(inputData) → {number}

Calculate quantization error for the current map

.

Calculate quantization error for the current map

Parameters:
Name Type Description
inputData Array

Array of input vectors

Source:
Returns:

Average quantization error

Type
number

calculateQueryConfidence(queryData) → {number}

Calculate confidence score for query processing

.

Calculate confidence score for query processing

Parameters:
Name Type Description
queryData Object

Processed query data

Source:
Returns:

Confidence score 0-1

Type
number

calculateRectangularDistance(coords1, coords2) → {number}

Calculate distance in rectangular topology

.

Calculate distance in rectangular topology

Parameters:
Name Type Description
coords1 Array

[x, y] coordinates of first node

coords2 Array

[x, y] coordinates of second node

Source:
Returns:

Euclidean distance

Type
number

calculateSummaryConfidence(context, summary) → {number}

Calculate confidence for generated summary

.

Calculate confidence for generated summary

Parameters:
Name Type Description
context Object

Community context

summary string

Generated summary

Source:
Returns:

Confidence score 0-1

Type
number

calculateTopographicError(inputData) → {number}

Calculate topographic error for the current map

.

Calculate topographic error for the current map

Parameters:
Name Type Description
inputData Array

Array of input vectors

Source:
Returns:

Topographic error (0-1)

Type
number

checkAPIHealth()

Check API health

.

Check API health

Source:

checkContextLimits(tokenCount, model, reservedOutputTokens) → {Object}

Check if content fits within model context limits

.

Check if content fits within model context limits

Parameters:
Name Type Default Description
tokenCount number

Token count to check

model string

Model name

reservedOutputTokens number 1000

Tokens to reserve for output

Source:
Returns:

Context limit check result

Type
Object

checkConvergence() → {boolean}

Check if training has converged

.

Check if training has converged

Source:
Returns:

True if converged

Type
boolean

(async) checkDependencyHealth()

Check if a dependency is healthy

.

Check if a dependency is healthy

Source:

checkRateLimit(req) → {boolean}

Check rate limiting for request

.

Check rate limiting for request

Parameters:
Name Type Description
req Object

Express request object

Source:
Returns:

True if request is allowed

Type
boolean

checkRateLimit()

Rate limiting

.

Rate limiting

Source:

(async) chunk(content, options) → {Promise.<Object>}

Main chunking method - splits content based on strategy and constraints

.

Main chunking method - splits content based on strategy and constraints

Parameters:
Name Type Description
content string | Array

Content to chunk (string or array of corpuscles)

options Object

Chunking options

Source:
Returns:

Chunking result

Type
Promise.<Object>

chunkCorpuscles()

Chunk corpuscles hierarchically

.

Chunk corpuscles hierarchically

Source:

(async) chunkHierarchicalText()

Chunk hierarchical text based on structure

.

Chunk hierarchical text based on structure

Source:

classifyError()

Classify error type based on error properties

.

Classify error type based on error properties

Source:

(async) cleanupPartialInitialization()

Cleanup partial initialization on failure

.

Cleanup partial initialization on failure

Source:

clear()

Clear the dataset

.

Clear the dataset

Source:

clear()

Clear the entire index

.

Clear the entire index

Source:

clearCache()

Clear response cache

.

Clear response cache

Source:

clearCache()

Reset and cleanup

.

Reset and cleanup

Source:

clearCache()

Clear token cache

.

Clear token cache

Source:

clearCaches()

Clear topology caches

.

Clear topology caches

Source:

clearVectorIndex()

Clear vector index

.

Clear vector index

Source:

clone(modificationsopt) → {Attribute}

Clone this attribute with optional modifications

.

Clone this attribute with optional modifications

Parameters:
Name Type Attributes Description
modifications Object <optional>

Properties to modify in the clone

Source:
Returns:

Cloned attribute

Type
Attribute

clone(modificationsopt) → {Entity}

Clone this entity with optional modifications

.

Clone this entity with optional modifications

Parameters:
Name Type Attributes Description
modifications Object <optional>

Properties to modify in the clone

Source:
Returns:

Cloned entity

Type
Entity

clone(modificationsopt) → {Relationship}

Clone this relationship with optional modifications

.

Clone this relationship with optional modifications

Parameters:
Name Type Attributes Description
modifications Object <optional>

Properties to modify in the clone

Source:
Returns:

Cloned relationship

Type
Relationship

clone(modificationsopt) → {SemanticUnit}

Clone this unit with optional modifications

.

Clone this unit with optional modifications

Parameters:
Name Type Attributes Description
modifications Object <optional>

Properties to modify in the clone

Source:
Returns:

Cloned unit

Type
SemanticUnit

clone() → {RDFGraphManager}

Clone the current dataset

.

Clone the current dataset

Source:
Returns:

New instance with cloned data

Type
RDFGraphManager

clone(optionsopt) → {RDFElement}

Clone this element with a new URI

.

Clone this element with a new URI

Parameters:
Name Type Attributes Description
options Object <optional>

Options for the cloned element

Source:
Returns:

Cloned element

Type
RDFElement

(async) clusterHypotheticalEntities(hypotheticalEntities) → {Promise.<Array>}

Cluster hypothetical entities separately

.

Cluster hypothetical entities separately

Parameters:
Name Type Description
hypotheticalEntities Array

Array of hypothetical entities

Source:
Returns:

Hypothetical clusters

Type
Promise.<Array>

combineResults(resultsArray, optionsopt) → {Object}

Combine results from multiple PPR runs

.

Combine results from multiple PPR runs

Parameters:
Name Type Attributes Description
resultsArray Array

Array of PPR results

options Object <optional>

Combination options

Source:
Returns:

Combined results

Type
Object

combineSearchResults(searchResults, options) → {Object}

Combine and rank results from all search strategies

.

Combine and rank results from all search strategies

Parameters:
Name Type Description
searchResults Object

Results from all search phases

options Object

Ranking options

Source:
Returns:

Combined and ranked results

Type
Object

compileTrainingResults(trainingTime) → {Object}

Compile final training results

.

Compile final training results

Parameters:
Name Type Description
trainingTime number

Total training time

Source:
Returns:

Complete training results

Type
Object

compose(validators)

Create a composite validator from multiple validators

.

Create a composite validator from multiple validators

Parameters:
Name Type Description
validators Array

Array of validator names or definitions

Source:

compress(uri) → {string}

Create a prefixed name from full URI

.

Create a prefixed name from full URI

Parameters:
Name Type Description
uri string

Full URI

Source:
Returns:

Prefixed name or original URI if no prefix found

Type
string

compressMetadata()

Compress metadata based on compression level

.

Compress metadata based on compression level

Source:

computeBetweennessCentrality(graph, optionsopt) → {Object}

Compute betweenness centrality using Brandes' algorithm

.

Compute betweenness centrality using Brandes' algorithm

Parameters:
Name Type Attributes Description
graph Object

Graph representation from buildGraphFromRDF

options Object <optional>

Algorithm options

Source:
Returns:

Betweenness centrality results

Type
Object

computeCommunityStatistics(communities, graph) → {Object}

Compute statistics for detected communities

.

Compute statistics for detected communities

Parameters:
Name Type Description
communities Map

Community mapping

graph Object

Original graph

Source:
Returns:

Community statistics

Type
Object

computeGraphStatistics(graph) → {Object}

Compute basic graph statistics

.

Compute basic graph statistics

Parameters:
Name Type Description
graph Object

Graph representation from buildGraphFromRDF

Source:
Returns:

Graph statistics

Type
Object

computeKCore(graph) → {Object}

Compute K-core decomposition K-core of a graph is the maximal subgraph where each vertex has at least k neighbors

.

Compute K-core decomposition K-core of a graph is the maximal subgraph where each vertex has at least k neighbors

Parameters:
Name Type Description
graph Object

Graph representation from buildGraphFromRDF

Source:
Returns:

K-core decomposition results

Type
Object

computeLeidenClustering(graph, optionsopt) → {Object}

Compute Leiden clustering (alias for detectCommunities for pipeline compatibility)

.

Compute Leiden clustering (alias for detectCommunities for pipeline compatibility)

Parameters:
Name Type Attributes Description
graph Object

Graph representation from GraphAnalytics

options Object <optional>

Algorithm options

Source:
Returns:

Community detection results

Type
Object

computeLeidenClustering(graph, optionsopt) → {Object}

Compute Leiden clustering (alias for detectCommunities for pipeline compatibility)

.

Compute Leiden clustering (alias for detectCommunities for pipeline compatibility)

Parameters:
Name Type Attributes Description
graph Object

Graph representation from GraphAnalytics

options Object <optional>

Algorithm options

Source:
Returns:

Community detection results

Type
Object

Compute similarity links between nodes

.

Compute similarity links between nodes

Parameters:
Name Type Description
embeddings Map

Map of embeddings

vectorIndex Object

Vector index for similarity search

options Object

Similarity options

dataset Dataset

RDF dataset

rdfManager RDFGraphManager

RDF manager

Source:
Returns:

Similarity statistics

Type
Promise.<Object>

conditional(condition, validator)

Create a conditional validator

.

Create a conditional validator

Parameters:
Name Type Description
condition function

Condition function

validator string | Object

Validator to apply if condition is true

Source:

connectElements(source, target, weightopt)

Connect two elements with ragno:connectsTo

.

Connect two elements with ragno:connectsTo

Parameters:
Name Type Attributes Description
source NamedNode

Source element

target NamedNode

Target element

weight number <optional>

Optional connection weight

Source:

connectTo(target, weightopt)

Connect this element to another element

.

Connect this element to another element

Parameters:
Name Type Attributes Description
target RDFElement | NamedNode

Target element

weight number <optional>

Optional weight

Source:

connects(entity1, entity2) → {boolean}

Check if this relationship connects two specific entities

.

Check if this relationship connects two specific entities

Parameters:
Name Type Description
entity1 RDFElement | NamedNode | string

First entity

entity2 RDFElement | NamedNode | string

Second entity

Source:
Returns:

True if relationship connects these entities

Type
boolean

convertToCSV(data) → {string}

Convert data to CSV format

.

Convert data to CSV format

Parameters:
Name Type Description
data Array

Data to convert

Source:
Returns:

CSV string

Type
string

coordinatesToIndex(x, y) → {number}

Convert 2D map coordinates to linear index

.

Convert 2D map coordinates to linear index

Parameters:
Name Type Description
x number

X coordinate

y number

Y coordinate

Source:
Returns:

Linear index

Type
number

coordinatesToIndex(x, y) → {number}

Convert 2D coordinates to linear index

.

Convert 2D coordinates to linear index

Parameters:
Name Type Description
x number

X coordinate

y number

Y coordinate

Source:
Returns:

Linear index

Type
number

cosineDistance(vector1, vector2) → {number}

Calculate cosine distance (1 - cosine similarity)

.

Calculate cosine distance (1 - cosine similarity)

Parameters:
Name Type Description
vector1 Array

First vector

vector2 Array

Second vector

Source:
Returns:

Cosine distance

Type
number

countRules()

Count total number of rules

.

Count total number of rules

Source:

(async) countTokens(text, tokenizer) → {Promise.<Object>}

Count tokens in text using specified tokenizer

.

Count tokens in text using specified tokenizer

Parameters:
Name Type Default Description
text string

Text to count tokens for

tokenizer string null

Tokenizer name (optional)

Source:
Returns:

Token count result

Type
Promise.<Object>

create(text, entity, optionsopt) → {Attribute}

Create an attribute with automatic URI generation

.

Create an attribute with automatic URI generation

Parameters:
Name Type Attributes Description
text string

Attribute text content

entity Entity | NamedNode | string

Associated entity

options Object <optional>

Additional options

Source:
Returns:

Created attribute

Type
Attribute

create(name, optionsopt) → {Entity}

Create an entity with automatic URI generation

.

Create an entity with automatic URI generation

Parameters:
Name Type Attributes Description
name string

Entity name/label

options Object <optional>

Additional options

Source:
Returns:

Created entity

Type
Entity

create(sourceEntity, targetEntity, descriptionopt, optionsopt) → {Relationship}

Create a relationship between two entities with automatic naming

.

Create a relationship between two entities with automatic naming

Parameters:
Name Type Attributes Description
sourceEntity RDFElement | NamedNode | string

Source entity

targetEntity RDFElement | NamedNode | string

Target entity

description string <optional>

Relationship description

options Object <optional>

Additional options

Source:
Returns:

Created relationship

Type
Relationship

create(text, optionsopt) → {SemanticUnit}

Create a semantic unit with automatic URI generation

.

Create a semantic unit with automatic URI generation

Parameters:
Name Type Attributes Description
text string

Unit text content

options Object <optional>

Additional options

Source:
Returns:

Created unit

Type
SemanticUnit

(async) createAdaptiveChunk()

Create adaptive chunk from boundary group

.

Create adaptive chunk from boundary group

Source:

createAttribute(entity, content, subTypeopt) → {NamedNode}

Create a ragno:Attribute with entity connection

.

Create a ragno:Attribute with entity connection

Parameters:
Name Type Attributes Description
entity NamedNode

Entity this attribute describes

content string

Attribute content

subType string <optional>

Attribute subtype (e.g., "Overview")

Source:
Returns:

Created attribute node

Type
NamedNode

(async) createAttributeRelationships(attributes, dataset, rdfManager)

Create relationships between attributes for cross-referencing

.

Create relationships between attributes for cross-referencing

Parameters:
Name Type Description
attributes Array.<Attribute>

Generated attributes

dataset Dataset

RDF dataset

rdfManager RDFGraphManager

RDF manager

Source:

createBidirectional(inverseDescriptionopt, inverseWeightopt) → {Relationship}

Create a bidirectional relationship (adds inverse)

.

Create a bidirectional relationship (adds inverse)

Parameters:
Name Type Attributes Description
inverseDescription string <optional>

Description for inverse relationship

inverseWeight number <optional>

Weight for inverse relationship

Source:
Returns:

Inverse relationship

Type
Relationship

createCacheKey()

Caching methods

.

Caching methods

Source:

createCacheKey()

Cache management methods

.

Cache management methods

Source:

createColorScale(scheme, domain) → {function}

Create a color scale

.

Create a color scale

Parameters:
Name Type Description
scheme string

D3 color scheme name

domain Array

Domain values

Source:
Returns:

D3 color scale

Type
function

createCompactRepresentation()

Helper methods for encoding strategies

.

Helper methods for encoding strategies

Source:

createConnector(config) → {Object}

Create an embedding connector based on provider configuration

.

Create an embedding connector based on provider configuration

Parameters:
Name Type Description
config Object

Provider configuration

Properties
Name Type Description
provider string

Provider type ('ollama', 'nomic')

model string

Model name to use

options Object

Provider-specific options

Source:
Returns:
  • Embedding connector instance
Type
Object

createDirectEntityFilter()

Entity filter implementations

.

Entity filter implementations

Source:

createEmptyResult(dataset, startTime) → {Object}

Create empty result for cases with no retrievable nodes

.

Create empty result for cases with no retrievable nodes

Parameters:
Name Type Description
dataset Dataset

RDF dataset

startTime number

Start time

Source:
Returns:

Empty result object

Type
Object

createEmptyResults() → {Object}

Create empty results structure

.

Create empty results structure

Source:
Returns:

Empty results

Type
Object

createEntity(name, isEntryPointopt) → {NamedNode}

Create a ragno:Entity with proper RDF structure

.

Create a ragno:Entity with proper RDF structure

Parameters:
Name Type Attributes Default Description
name string

Entity name

isEntryPoint boolean <optional>
true

Whether entity is an entry point

Source:
Returns:

Created entity node

Type
NamedNode

createExactTemporalFilter()

Temporal filter implementations

.

Temporal filter implementations

Source:

createExactTopicFilter()

Topic filter implementations

.

Topic filter implementations

Source:

createHypothesisPrompt(input, index, options) → {string}

Create a prompt for hypothesis generation

.

Create a prompt for hypothesis generation

Parameters:
Name Type Description
input string

Input query or entity URI

index number

Hypothesis index for variation

options Object

Options for prompt creation

Source:
Returns:

Generated prompt

Type
string

createHypothesisRelationships(originalInput, hypothesisUnit, entities) → {Array}

Create relationships between query, hypothesis, and extracted entities

.

Create relationships between query, hypothesis, and extracted entities

Parameters:
Name Type Description
originalInput string

Original input query

hypothesisUnit SemanticUnit

Hypothesis semantic unit

entities Array

Extracted entities

Source:
Returns:

Created relationships

Type
Array

createHypothesisUnit(hypothesis, originalInput, index) → {SemanticUnit}

Create a SemanticUnit for a hypothesis

.

Create a SemanticUnit for a hypothesis

Parameters:
Name Type Description
hypothesis Object

Generated hypothesis object

originalInput string

Original input query

index number

Hypothesis index

Source:
Returns:

Hypothesis semantic unit

Type
SemanticUnit

(async) createInterCommunityRelationships(communities, dataset, rdfManager, graph)

Create relationships between overlapping communities

.

Create relationships between overlapping communities

Parameters:
Name Type Description
communities Array.<CommunityElement>

Community elements

dataset Dataset

RDF dataset

rdfManager RDFGraphManager

RDF manager

graph Object

Graph object

Source:

(async) createInterUnitRelationships(units, dataset, rdfManager)

Create inter-unit relationships for coherence

.

Create inter-unit relationships for coherence

Parameters:
Name Type Description
units Array.<SemanticUnit>

List of semantic units

dataset Dataset

RDF dataset

rdfManager RDFGraphManager

RDF graph manager

Source:

createLegend(svg, colorScale, options) → {Object}

Create a legend for a color scale

.

Create a legend for a color scale

Parameters:
Name Type Description
svg Object

D3 SVG selection

colorScale Object

D3 color scale

options Object

Legend options

Source:
Returns:

Legend object with update method

Type
Object

createNamedNode(type) → {NamedNode}

Create a new named node with generated URI

.

Create a new named node with generated URI

Parameters:
Name Type Description
type string

Resource type

Source:
Returns:

RDF named node

Type
NamedNode

createNeighborhoodFunction(functionType) → {function}

Create neighborhood function for training

.

Create neighborhood function for training

Parameters:
Name Type Default Description
functionType string gaussian

'gaussian', 'mexican_hat', 'bubble', 'linear'

Source:
Returns:

Neighborhood function(distance, radius)

Type
function

createOverview(entity, text, optionsopt) → {Attribute}

Create an overview attribute for an entity (common pattern)

.

Create an overview attribute for an entity (common pattern)

Parameters:
Name Type Attributes Description
entity Entity | NamedNode | string

Associated entity

text string

Overview text

options Object <optional>

Additional options

Source:
Returns:

Created overview attribute

Type
Attribute

createParameterHash()

Create a hash of normalized parameters for caching

.

Create a hash of normalized parameters for caching

Source:

createPointGeographicFilter()

Geographic filter implementations

.

Geographic filter implementations

Source:

createRelationship(sourceEntity, targetEntity, description, weightopt) → {NamedNode}

Create a ragno:Relationship as first-class RDF resource

.

Create a ragno:Relationship as first-class RDF resource

Parameters:
Name Type Attributes Default Description
sourceEntity NamedNode

Source entity

targetEntity NamedNode

Target entity

description string

Relationship description

weight number <optional>
1.0

Relationship weight

Source:
Returns:

Created relationship node

Type
NamedNode

createResponsiveSVG(container, options) → {Object}

Create a responsive SVG element

.

Create a responsive SVG element

Parameters:
Name Type Description
container HTMLElement

The container element

options Object

Configuration options

Source:
Returns:

D3 selection of the SVG element

Type
Object

(async) createSOMInstance()

Create a new SOM instance with specified configuration

.

Create a new SOM instance with specified configuration

Source:

createSemanticChunk()

Create semantic chunk object

.

Create semantic chunk object

Source:

createTooltip(options) → {Object}

Create a tooltip

.

Create a tooltip

Parameters:
Name Type Description
options Object

Tooltip options

Source:
Returns:

Tooltip functions

Type
Object

createUnit(content, sourceopt) → {NamedNode}

Create a ragno:Unit with proper RDF structure

.

Create a ragno:Unit with proper RDF structure

Parameters:
Name Type Attributes Description
content string

Unit content

source string <optional>

Source document reference

Source:
Returns:

Created unit node

Type
NamedNode

cubeToOffset(cube) → {Array}

Convert cube coordinates to offset coordinates

.

Convert cube coordinates to offset coordinates

Parameters:
Name Type Description
cube Object

Cube coordinates {x, y, z}

Source:
Returns:

Offset coordinates [col, row]

Type
Array

debounce(func, wait) → {function}

Debounce function

.

Debounce function

Parameters:
Name Type Description
func function

Function to debounce

wait number

Wait time in ms

Source:
Returns:

Debounced function

Type
function

(async) decode()

Decoding methods for retrieving metadata

.

Decoding methods for retrieving metadata

Source:

decomposeCorpus(textChunks, llmHandler, optionsopt) → {Promise.<{units: Array.<SemanticUnit>, entities: Array.<Entity>, relationships: Array.<Relationship>, dataset: Dataset}>}

Decompose text chunks into RDF-based semantic units, entities, and relationships

.

Decompose text chunks into RDF-based semantic units, entities, and relationships

Parameters:
Name Type Attributes Description
textChunks Array.<{content: string, source: string}>

Text chunks to decompose

llmHandler Object

Instance of Semem's LLMHandler

options Object <optional>

Decomposition options

Source:
Returns:
Type
Promise.<{units: Array.<SemanticUnit>, entities: Array.<Entity>, relationships: Array.<Relationship>, dataset: Dataset}>

(async) decomposeText()

Decompose text into knowledge graph entities and relationships

.

Decompose text into knowledge graph entities and relationships

Source:

(async) deleteInstance()

Delete a VSOM instance

.

Delete a VSOM instance

Source:

detectCommunities(graph, optionsopt) → {Object}

Run Leiden algorithm for community detection

.

Run Leiden algorithm for community detection

Parameters:
Name Type Attributes Description
graph Object

Graph representation from GraphAnalytics

options Object <optional>

Algorithm options

Source:
Returns:

Community detection results

Type
Object

detectTopicDomain()

Domain detection methods

.

Domain detection methods

Source:

determineCorpuscleType()

Determine corpuscle type from SPARQL binding

.

Determine corpuscle type from SPARQL binding

Source:

determineResponseType()

Determine response type based on data structure

.

Determine response type based on data structure

Source:

displayError(message, containeropt)

Display an error message in the specified container

.

Display an error message in the specified container

Parameters:
Name Type Attributes Description
message string

The error message to display

container HTMLElement <optional>

Optional container to show the error in (defaults to document body)

Source:

dispose()

Clean up resources

.

Clean up resources

Source:

dispose()

Dispose of resources

.

Dispose of resources

Source:

(async) encode(formattedContent, fullContext, options) → {Object}

Main encoding method - embeds metadata into formatted content

.

Main encoding method - embeds metadata into formatted content

Parameters:
Name Type Description
formattedContent Object

Content from PromptFormatter

fullContext Object

Complete processing context

options Object

Encoding options

Source:
Returns:

Content with embedded metadata

Type
Object

(async) encodeStructured()

Encoding strategy implementations

.

Encoding strategy implementations

Source:

enhanceClustersWithCentrality(graphResults) → {Array}

Enhance clusters with centrality measures

.

Enhance clusters with centrality measures

Parameters:
Name Type Description
graphResults Object

Graph analytics results

Source:
Returns:

Enhanced clusters

Type
Array

enhanceSearchResults(pprResults, graph, dataset) → {Object}

Enhance search results with additional metadata

.

Enhance search results with additional metadata

Parameters:
Name Type Description
pprResults Object

PPR results

graph Object

Graph representation

dataset Dataset

Original RDF dataset

Source:
Returns:

Enhanced results

Type
Object

(async) enrichGraph()

Enrich graph with embeddings and attributes

.

Enrich graph with embeddings and attributes

Source:

enrichWithEmbeddings(graphData, embeddingHandler, optionsopt) → {Promise.<{vectorIndex: VectorIndex, embeddings: Map, similarityLinks: Array, dataset: Dataset, statistics: Object}>}

Enrich graph with vector embeddings and build searchable index

.

Enrich graph with vector embeddings and build searchable index

Parameters:
Name Type Attributes Description
graphData Object

Graph data with RDF dataset

embeddingHandler Object

Semem's EmbeddingHandler instance

options Object <optional>

Enrichment options

Source:
Returns:
Type
Promise.<{vectorIndex: VectorIndex, embeddings: Map, similarityLinks: Array, dataset: Dataset, statistics: Object}>

(async) ensureInitialized() → {Promise.<void>}

Wait for the MemoryManager to be fully initialized

.

Wait for the MemoryManager to be fully initialized

Source:
Returns:
Type
Promise.<void>

ensureInitialized()

Ensure system is initialized

.

Ensure system is initialized

Source:
Throws:

If system is not initialized

Type
Error

escapeString()

Escape string for SPARQL

.

Escape string for SPARQL

Source:

estimateConfidence(hypothesis, originalInput) → {number}

Estimate confidence score for a generated hypothesis

.

Estimate confidence score for a generated hypothesis

Parameters:
Name Type Description
hypothesis string

Generated hypothesis text

originalInput string

Original input query

Source:
Returns:

Confidence score between 0 and 1

Type
number

estimateCost(inputTokens, outputTokens, model) → {Object}

Estimate cost for token usage

.

Estimate cost for token usage

Parameters:
Name Type Description
inputTokens number

Number of input tokens

outputTokens number

Number of output tokens

model string

Model name

Source:
Returns:

Cost estimation

Type
Object

estimateMemoryUsage() → {number}

Estimate total memory usage

.

Estimate total memory usage

Source:
Returns:

Estimated memory usage in bytes

Type
number

estimateMemoryUsage() → {number}

Estimate memory usage of the algorithm

.

Estimate memory usage of the algorithm

Source:
Returns:

Estimated memory usage in bytes

Type
number

estimateMemoryUsage() → {number}

Estimate memory usage of topology management

.

Estimate memory usage of topology management

Source:
Returns:

Estimated memory usage in bytes

Type
number

estimateMemoryUsage() → {number}

Estimate memory usage

.

Estimate memory usage

Source:
Returns:

Estimated memory usage in bytes

Type
number

estimateResults()

Estimate number of results based on complexity

.

Estimate number of results based on complexity

Source:

estimateSegmentSize()

Estimate segment size between boundaries

.

Estimate segment size between boundaries

Source:

estimateSelectivity()

Estimate selectivity of criteria

.

Estimate selectivity of criteria

Source:

estimateTokenCount()

Utility methods

.

Utility methods

Source:

estimateTokenCount(text, tokenizerName) → {Object}

Simple token estimation fallback

.

Simple token estimation fallback

Parameters:
Name Type Description
text string

Text to estimate

tokenizerName string

Tokenizer name

Source:
Returns:

Simple token estimate

Type
Object

estimateTokensPerResult(zoomLevel) → {number}

Estimate tokens per result for a zoom level

.

Estimate tokens per result for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Estimated tokens per result

Type
number

estimateTopicSelectivity()

Selectivity estimation methods

.

Selectivity estimation methods

Source:

euclideanDistance(vector1, vector2) → {number}

Calculate Euclidean distance

.

Calculate Euclidean distance

Parameters:
Name Type Description
vector1 Array

First vector

vector2 Array

Second vector

Source:
Returns:

Euclidean distance

Type
number

(async) execute(name, value, options)

Execute a validator

.

Execute a validator

Parameters:
Name Type Description
name string

Validator name

value *

Value to validate

options Object

Validator options

Source:

(async) executeNavigationPipeline()

Execute complete navigation pipeline

.

Execute complete navigation pipeline

Source:

(async, abstract) executeOperation(operation, params)

Execute a memory operation

.

Execute a memory operation

Parameters:
Name Type Description
operation string

Operation name

params Object

Operation parameters

Source:

(async) executeOperation()

Execute a chat operation

.

Execute a chat operation

Source:

(async) executeOperation()

Execute a memory operation

.

Execute a memory operation

Source:

(async) executeOperation()

Execute a ragno operation

.

Execute a ragno operation

Source:

(async) executeOperation()

Execute a search operation

.

Execute a search operation

Source:

(async) executeOperation()

Execute unified search operation

.

Execute unified search operation

Source:

(async) executeOperation()

Execute a ZPT operation

.

Execute a ZPT operation

Source:

(async) executeQuery()

Execute SPARQL query against the corpus

.

Execute SPARQL query against the corpus

Source:

(async) executeSPARQLQuery(endpoint, query, options) → {Promise.<Array>}

Execute SPARQL query (placeholder implementation)

.

Execute SPARQL query (placeholder implementation)

Parameters:
Name Type Description
endpoint string

SPARQL endpoint URL

query string

SPARQL query

options Object

Query options

Source:
Returns:

Query results

Type
Promise.<Array>

(async) executeStageWithTimeout()

Pipeline execution utilities

.

Pipeline execution utilities

Source:

executeWithTimeout()

Utility methods

.

Utility methods

Source:

expandCluster(seedIndex, threshold, visited) → {Object}

Expand cluster using neighboring nodes

.

Expand cluster using neighboring nodes

Parameters:
Name Type Description
seedIndex number

Starting node index

threshold number

Similarity threshold

visited Set

Set of visited nodes

Source:
Returns:

Cluster object

Type
Object

(async) expandQueryTerms(entities) → {Array}

Expand query terms for enhanced matching

.

Expand query terms for enhanced matching

Parameters:
Name Type Description
entities Array

Original entity terms

Source:
Returns:

Expanded terms

Type
Array

exportAllResultsToRDF(results, targetDataset)

Export all analysis results to RDF

.

Export all analysis results to RDF

Parameters:
Name Type Description
results Object

Analysis results

targetDataset Dataset

Target RDF dataset

Source:

exportCommunitiesToRDF(results, targetDataset)

Export communities to RDF format

.

Export communities to RDF format

Parameters:
Name Type Description
results Object

Community detection results

targetDataset Dataset

Target RDF dataset

Source:

exportEnrichmentResults(enrichmentResults, indexPath, optionsopt) → {Promise.<Object>}

Export enrichment results for use in search systems

.

Export enrichment results for use in search systems

Parameters:
Name Type Attributes Description
enrichmentResults Object

Results from enrichWithEmbeddings

indexPath string

Path to save vector index

options Object <optional>

Export options

Source:
Returns:

Export statistics

Type
Promise.<Object>

(async) exportGraph()

Export graph data in specified format

.

Export graph data in specified format

Source:

exportResultsToRDF(results, targetDataset, graphUriopt)

Export analysis results to RDF format

.

Export analysis results to RDF format

Parameters:
Name Type Attributes Description
results Object

Analysis results

targetDataset Dataset

Target RDF dataset

graphUri string <optional>

Optional graph context URI

Source:

exportResultsToRDF(results, targetDataset)

Export PPR results to RDF format

.

Export PPR results to RDF format

Parameters:
Name Type Description
results Object

PPR results

targetDataset Dataset

Target RDF dataset

Source:

exportToDataset(targetDataset)

Export all triples of this element to a target dataset

.

Export all triples of this element to a target dataset

Parameters:
Name Type Description
targetDataset Dataset

The RDF-Ext dataset to export to

Source:

exportToRDF(dataset, optionsopt) → {number}

Export results to RDF dataset

.

Export results to RDF dataset

Parameters:
Name Type Attributes Description
dataset Object

RDF dataset to augment

options Object <optional>

Export options

Source:
Returns:

Number of triples added

Type
number

exportToRDF(decompositionResults, endpoint, authopt) → {Promise.<Object>}

Export decomposition results to SPARQL endpoint

.

Export decomposition results to SPARQL endpoint

Parameters:
Name Type Attributes Description
decompositionResults Object

Results from decomposeCorpus

endpoint string

SPARQL endpoint URL

auth Object <optional>

Authentication credentials

Source:
Returns:

Export statistics

Type
Promise.<Object>

exportVisualization(formatopt) → {Object|string}

Export visualization coordinates

.

Export visualization coordinates

Parameters:
Name Type Attributes Default Description
format string <optional>
coordinates

Output format ('coordinates', 'json', 'csv')

Source:
Returns:

Visualization data

Type
Object | string

extractBasicInfo()

Extract basic request information

.

Extract basic request information

Source:

extractClientInfo()

Extract client information

.

Extract client information

Source:

extractClientIp()

Extract real client IP address

.

Extract real client IP address

Source:

extractCommunityKeywords(summary, memberEntities) → {Array.<string>}

Extract keywords from community summary and members

.

Extract keywords from community summary and members

Parameters:
Name Type Description
summary string

Generated summary

memberEntities Array

Community member entities

Source:
Returns:

Extracted keywords

Type
Array.<string>

(async) extractConcepts()

Extract concepts from text

.

Extract concepts from text

Source:

(async) extractConcepts(text) → {Promise.<Array.<string>>}

Parameters:
Name Type Description
text string
Source:
Returns:
Type
Promise.<Array.<string>>

extractContent()

Extract content from SPARQL binding

.

Extract content from SPARQL binding

Source:

extractContentString()

Helper methods for pipeline stages

.

Helper methods for pipeline stages

Source:

extractEntitiesFromDataset(dataset) → {Array}

Extract entities from RDF dataset (helper method)

.

Extract entities from RDF dataset (helper method)

Parameters:
Name Type Description
dataset Dataset

RDF dataset

Source:
Returns:

Array of entities

Type
Array

(async) extractEntitiesFromHypothesis(hypothesis, llmHandler, options) → {Array}

Extract entities from a generated hypothesis

.

Extract entities from a generated hypothesis

Parameters:
Name Type Description
hypothesis Object

Generated hypothesis object

llmHandler Object

LLM handler instance

options Object

Extraction options

Source:
Returns:

Extracted entities

Type
Array

(async) extractEntitiesFromUnit(unitText, llmHandler, options) → {Promise.<Array.<Object>>}

Extract entities from a semantic unit

.

Extract entities from a semantic unit

Parameters:
Name Type Description
unitText string

Unit text content

llmHandler Object

LLM handler

options Object

Extraction options

Source:
Returns:

Array of entity data objects

Type
Promise.<Array.<Object>>

extractEntityData(entity) → {Object}

Extract entity data from various entity formats

.

Extract entity data from various entity formats

Parameters:
Name Type Description
entity Object

Entity object

Source:
Returns:

Extracted entity data

Type
Object

extractKeywords(content) → {Array.<string>}

Extract keywords from attribute content

.

Extract keywords from attribute content

Parameters:
Name Type Description
content string

Attribute content

Source:
Returns:

Extracted keywords

Type
Array.<string>

extractKeywords()

Analysis and processing methods

.

Analysis and processing methods

Source:

extractLimit()

Extract LIMIT value from query string

.

Extract LIMIT value from query string

Source:

extractMetadata()

Extract metadata from SPARQL binding

.

Extract metadata from SPARQL binding

Source:

extractMetadata()

Extract comprehensive metadata from processing context

.

Extract comprehensive metadata from processing context

Source:

extractNamespace()

Extract namespace from topic string

.

Extract namespace from topic string

Source:

extractNavigationMetadata()

Extract navigation-specific metadata

.

Extract navigation-specific metadata

Source:

extractPerformanceMetadata()

Extract performance metadata

.

Extract performance metadata

Source:

extractProvenanceMetadata()

Extract data provenance metadata

.

Extract data provenance metadata

Source:

extractQualityMetadata()

Extract quality indicators

.

Extract quality indicators

Source:

(async) extractRelationships(entities, units, llmHandler, options) → {Promise.<Array.<Object>>}

Extract relationships between entities

.

Extract relationships between entities

Parameters:
Name Type Description
entities Array.<Entity>

List of entities

units Array.<SemanticUnit>

List of semantic units

llmHandler Object

LLM handler

options Object

Extraction options

Source:
Returns:

Array of relationship data objects

Type
Promise.<Array.<Object>>

(async) extractSemanticUnits(text, llmHandler, options) → {Promise.<Array.<string>>}

Extract semantic units from text using LLM

.

Extract semantic units from text using LLM

Parameters:
Name Type Description
text string

Input text

llmHandler Object

LLM handler

options Object

Extraction options

Source:
Returns:

Array of semantic unit texts

Type
Promise.<Array.<string>>

extractSubgraph(graph, nodes) → {Object}

Extract subgraph containing only specified nodes

.

Extract subgraph containing only specified nodes

Parameters:
Name Type Description
graph Object

Original graph

nodes Set

Nodes to include

Source:
Returns:

Subgraph

Type
Object

extractTechnicalMetadata()

Extract technical implementation details

.

Extract technical implementation details

Source:

extractTextContent()

Helper methods for content extraction

.

Helper methods for content extraction

Source:

fetchWithTimeout(resource, options, timeout) → {Promise.<Response>}

Fetch with timeout utility

.

Fetch with timeout utility

Parameters:
Name Type Description
resource string

URL to fetch

options object

Fetch options

timeout number

Timeout in milliseconds (default: 30000)

Source:
Returns:
Type
Promise.<Response>

filterCorpuscles()

Apply selection criteria to filter corpuscles

.

Apply selection criteria to filter corpuscles

Source:

filterSmallCommunities(communities, minSize) → {Map}

Filter out communities smaller than minimum size

.

Filter out communities smaller than minimum size

Parameters:
Name Type Description
communities Map

Community mapping

minSize number

Minimum community size

Source:
Returns:

Filtered communities

Type
Map

findBestMatchingUnits(inputBatch) → {Array}

Find Best Matching Units (BMUs) for a batch of input vectors

.

Find Best Matching Units (BMUs) for a batch of input vectors

Parameters:
Name Type Description
inputBatch Array

Array of input vectors

Source:
Returns:

Array of BMU indices for each input

Type
Array

findConnectedComponents(subgraph) → {Array}

Find connected components in a subgraph

.

Find connected components in a subgraph

Parameters:
Name Type Description
subgraph Object

Subgraph to analyze

Source:
Returns:

Array of connected components

Type
Array

findConnectedComponents(graph) → {Object}

Find connected components using DFS

.

Find connected components using DFS

Parameters:
Name Type Description
graph Object

Graph representation from buildGraphFromRDF

Source:
Returns:

Connected components information

Type
Object

findCrossTypeNodes(graph, topNodes) → {Array}

Find nodes that connect different types (bridge nodes)

.

Find nodes that connect different types (bridge nodes)

Parameters:
Name Type Description
graph Object

Graph representation

topNodes Array

Top-ranked nodes to analyze

Source:
Returns:

Cross-type bridge nodes

Type
Array

findEntityCluster(entityIndex, clusters) → {number}

Find which cluster an entity belongs to

.

Find which cluster an entity belongs to

Parameters:
Name Type Description
entityIndex number

Entity index

clusters Array

Array of clusters

Source:
Returns:

Cluster index or -1 if not found

Type
number

findNextBoundary()

Find next boundary position

.

Find next boundary position

Source:

findSemanticBoundaries()

Find semantic boundaries in text

.

Find semantic boundaries in text

Source:

(async) findSimilarElements(queryEmbedding, limit, threshold, filters) → {Promise.<Array>}

Advanced similarity search with SPARQL-based cosine similarity

.

Advanced similarity search with SPARQL-based cosine similarity

Parameters:
Name Type Default Description
queryEmbedding Array.<number>

Query embedding vector

limit number 10

Maximum results

threshold number 0.7

Similarity threshold

filters Object

Additional filters

Source:
Returns:

Similar elements with similarity scores

Type
Promise.<Array>

findSimilarNodes(uri, kopt, optionsopt) → {Array}

Find nodes similar to a given node in the index

.

Find nodes similar to a given node in the index

Parameters:
Name Type Attributes Default Description
uri string

URI of the reference node

k number <optional>
10

Number of similar nodes to return

options Object <optional>

Search options

Source:
Returns:

Similar nodes (excluding the reference node)

Type
Array

findSimilarNodes(uri, kopt, optionsopt) → {Array}

Find similar nodes

.

Find similar nodes

Parameters:
Name Type Attributes Default Description
uri string

Reference node URI

k number <optional>
10

Number of similar nodes

options Object <optional>

Search options

Source:
Returns:

Similar nodes

Type
Array

findSingleBMU(inputVector) → {number}

Find Best Matching Unit for a single input vector

.

Find Best Matching Unit for a single input vector

Parameters:
Name Type Description
inputVector Array

Input vector

Source:
Returns:

Index of the best matching unit

Type
number

(async) fixedSizeChunking()

Fixed size chunking strategy

.

Fixed size chunking strategy

Source:

(async) flushSyncQueue()

Process queued sync operations in batch

.

Process queued sync operations in batch

Source:

(async) format(data, context) → {Object}

Main formatting method - routes to appropriate formatter

.

Main formatting method - routes to appropriate formatter

Parameters:
Name Type Description
data Object

Response data to format

context Object

Request context and metadata

Source:
Returns:

Formatted response

Type
Object

(async) format(projectedContent, navigationContext, options) → {Object}

Main formatting method - transforms projected content for LLM consumption

.

Main formatting method - transforms projected content for LLM consumption

Parameters:
Name Type Description
projectedContent Object

Content from TiltProjector

navigationContext Object

ZPT navigation context

options Object

Formatting options

Source:
Returns:

Formatted content ready for LLM

Type
Object

(async) formatAsAnalytical()

Format as analytical

.

Format as analytical

Source:

(async) formatAsConversational()

Format as conversational

.

Format as conversational

Source:

(async) formatAsJSON()

Format as JSON

.

Format as JSON

Source:

(async) formatAsMarkdown()

Format as Markdown

.

Format as Markdown

Source:

(async) formatAsStructured()

Format as structured prompt

.

Format as structured prompt

Source:

formatContentAsMarkdown()

Content formatting helpers

.

Content formatting helpers

Source:

formatContentNaturally()

Content naturally formatted for conversation

.

Content naturally formatted for conversation

Source:

formatErrorResponse()

Format error response

.

Format error response

Source:

(async) formatErrorResponse()

Format error responses

.

Format error responses

Source:

formatGroupSummary()

Create summary for a group of related interactions

.

Create summary for a group of related interactions

Source:

(async) formatHealthResponse()

Format health check responses

.

Format health check responses

Source:

formatMetadataAsMarkdown()

Metadata formatting

.

Metadata formatting

Source:

(async) formatMetricsResponse()

Format metrics responses

.

Format metrics responses

Source:

formatNavigationParameters()

Helper methods for data formatting

.

Helper methods for data formatting

Source:

(async) formatNavigationResponse()

Format navigation responses

.

Format navigation responses

Source:

(async) formatOptionsResponse()

Format options responses

.

Format options responses

Source:

(async) formatPreviewResponse()

Format preview responses

.

Format preview responses

Source:

formatSI(num) → {string}

Format number with SI prefix

.

Format number with SI prefix

Parameters:
Name Type Description
num number

Number to format

Source:
Returns:

Formatted string

Type
string

(async) formatSchemaResponse()

Format schema responses

.

Format schema responses

Source:

formatSingleInteraction()

Format a single interaction for display

.

Format a single interaction for display

Source:

(async) formatSuccessResponse()

Format success responses

.

Format success responses

Source:

fromSimpleObject(obj, optionsopt) → {Attribute}

Create attribute from simple object (migration helper)

.

Create attribute from simple object (migration helper)

Parameters:
Name Type Attributes Description
obj Object

Simple object representation

options Object <optional>

Additional options

Source:
Returns:

RDF-based attribute

Type
Attribute

fromSimpleObject(obj, optionsopt) → {Entity}

Create entity from simple object (migration helper for RagnoMemoryStore)

.

Create entity from simple object (migration helper for RagnoMemoryStore)

Parameters:
Name Type Attributes Description
obj Object

Simple object representation

options Object <optional>

Additional options

Source:
Returns:

RDF-based entity

Type
Entity

fromSimpleObject(obj, optionsopt) → {Relationship}

Create relationship from simple object (migration helper)

.

Create relationship from simple object (migration helper)

Parameters:
Name Type Attributes Description
obj Object

Simple object representation

options Object <optional>

Additional options

Source:
Returns:

RDF-based relationship

Type
Relationship

fromSimpleObject(obj, optionsopt) → {SemanticUnit}

Create unit from simple object (migration helper)

.

Create unit from simple object (migration helper)

Parameters:
Name Type Attributes Description
obj Object

Simple object representation

options Object <optional>

Additional options

Source:
Returns:

RDF-based unit

Type
SemanticUnit

(async) gatherCommunityContext(community, graphData, options) → {Promise.<Object>}

Gather comprehensive context for a community

.

Gather comprehensive context for a community

Parameters:
Name Type Description
community Object

Community object with members

graphData Object

Graph data

options Object

Context gathering options

Source:
Returns:

Community context object

Type
Promise.<Object>

(async) gatherEntityContext(entity, graphData, options) → {Promise.<Object>}

Gather comprehensive context for an entity

.

Gather comprehensive context for an entity

Parameters:
Name Type Description
entity Entity

Entity to gather context for

graphData Object

Graph data

options Object

Context gathering options

Source:
Returns:

Entity context object

Type
Promise.<Object>

gaussianRandom() → {number}

Generate Gaussian random number (Box-Muller transform)

.

Generate Gaussian random number (Box-Muller transform)

Source:
Returns:

Random number from standard normal distribution

Type
number

generateCacheKey(method, query, options) → {string}

Generate cache key for request

.

Generate cache key for request

Parameters:
Name Type Description
method string

Search method

query string

Search query

options Object

Search options

Source:
Returns:

Cache key

Type
string

(async) generateChat(model, messages, options) → {string}

Generate chat completion using Claude

.

Generate chat completion using Claude

Parameters:
Name Type Description
model string

Model name to use

messages Array

Array of message objects with role and content

options Object

Additional options

Source:
Returns:
  • Response text
Type
string

(async) generateChat(model, messages, options) → {string}

Generate chat completion using Mistral

.

Generate chat completion using Mistral

Parameters:
Name Type Description
model string

Model name to use (defaults to instance default)

messages Array

Array of message objects with role and content

options Object

Additional options

Source:
Returns:
  • Response text
Type
string

(async) generateChat(model, messages, options) → {string}

Generate chat completion using Ollama

.

Generate chat completion using Ollama

Parameters:
Name Type Description
model string

Model name to use

messages Array

Array of message objects with role and content

options Object

Additional options

Source:
Returns:
  • Response text
Type
string

(async) generateChatResponse()

Generate a chat response with memory context

.

Generate a chat response with memory context

Source:

(async, generator) generateChatStream(model, messages, options) → {AsyncGenerator.<string>}

Generate a streaming chat completion

.

Generate a streaming chat completion

Parameters:
Name Type Description
model string

Model name to use (defaults to instance default)

messages Array

Array of message objects with role and content

options Object

Additional options

Source:
Returns:
  • An async generator that yields chunks of the response
Type
AsyncGenerator.<string>

generateClusters(threshold) → {Array}

Generate clusters from trained map

.

Generate clusters from trained map

Parameters:
Name Type Description
threshold number

Clustering threshold

Source:
Returns:

Array of clusters

Type
Array

(async) generateCommunitySummary(community, context, llmHandler, options) → {Promise.<Object>}

Generate LLM summary for a community

.

Generate LLM summary for a community

Parameters:
Name Type Description
community Object

Community object

context Object

Community context

llmHandler Object

LLM handler

options Object

Generation options

Source:
Returns:

Summary data with keywords and confidence

Type
Promise.<Object>

(async) generateCompletion()

Generate a text completion with memory context

.

Generate a text completion with memory context

Source:

(async) generateCompletion(model, prompt, options) → {string}

Generate completion using Claude

.

Generate completion using Claude

Parameters:
Name Type Description
model string

Model name to use

prompt string

Text prompt

options Object

Additional options

Source:
Returns:
  • Response text
Type
string

(async) generateCompletion(model, prompt, options) → {string}

Generate completion (for backward compatibility)

.

Generate completion (for backward compatibility)

Parameters:
Name Type Description
model string

Model name to use

prompt string

The prompt to complete

options Object

Additional options

Source:
Returns:
  • Completion text
Type
string

(async) generateCompletion()

Generate chat completion (not supported by Nomic embedding API)

.

Generate chat completion (not supported by Nomic embedding API)

Source:

(async) generateCompletion(model, prompt, options) → {string}

Generate completion using Ollama

.

Generate completion using Ollama

Parameters:
Name Type Description
model string

Model name to use

prompt string

Text prompt

options Object

Additional options

Source:
Returns:
  • Response text
Type
string

(async) generateEmbedding()

Generate embedding for text

.

Generate embedding for text

Source:

(async) generateEmbedding(model, input) → {Array.<number>}

Generate embeddings using Claude

.

Generate embeddings using Claude

Parameters:
Name Type Description
model string

Model name to use for embedding

input string

Text to generate embedding for

Source:
Returns:
  • Vector embedding
Type
Array.<number>

(async) generateEmbedding(model, input) → {Array.<number>}

Generate embeddings using Mistral

.

Generate embeddings using Mistral

Parameters:
Name Type Default Description
model string mistral-embed

Model name to use for embedding (defaults to 'mistral-embed')

input string

Text to generate embedding for

Source:
Returns:
  • Vector embedding
Type
Array.<number>

(async) generateEmbedding(model, input) → {Array.<number>|Array.<Array.<number>>}

Generate embeddings using Nomic Atlas API

.

Generate embeddings using Nomic Atlas API

Parameters:
Name Type Description
model string

Model name to use for embedding (optional, uses default)

input string | Array.<string>

Text or array of texts to generate embeddings for

Source:
Returns:
  • Vector embedding(s)
Type
Array.<number> | Array.<Array.<number>>

(async) generateEmbedding(model, input) → {Array.<number>}

Generate embeddings using Ollama

.

Generate embeddings using Ollama

Parameters:
Name Type Description
model string

Model name to use for embedding

input string

Text to generate embedding for

Source:
Returns:
  • Vector embedding
Type
Array.<number>

(async) generateEmbedding(text, model, retriesopt) → {Promise.<Array.<number>>}

Parameters:
Name Type Attributes Default Description
text string
model string
retries number <optional>
3
Source:
Returns:
Type
Promise.<Array.<number>>

(async) generateEntityAttribute(entity, context, attributeType, llmHandler, options) → {Promise.<Object>}

Generate a specific type of attribute for an entity

.

Generate a specific type of attribute for an entity

Parameters:
Name Type Description
entity Entity

Entity to generate attribute for

context Object

Entity context

attributeType string

Type of attribute to generate

llmHandler Object

LLM handler

options Object

Generation options

Source:
Returns:

Generated attribute data

Type
Promise.<Object>

generateErrorSuggestions()

Generate helpful suggestions based on error type

.

Generate helpful suggestions based on error type

Source:

generateFuzzyPatterns()

Helper methods for pattern generation and expansion

.

Helper methods for pattern generation and expansion

Source:

(async) generateHypotheses()

Generate hypotheses using HyDE algorithm

.

Generate hypotheses using HyDE algorithm

Source:

(async) generateHypotheses(inputs, llmHandler, targetDataset, optionsopt) → {Object}

Generate hypothetical answers and augment RDF graph

.

Generate hypothetical answers and augment RDF graph

Parameters:
Name Type Attributes Description
inputs Array | string

Query strings or entity URIs to generate hypotheses for

llmHandler Object

LLM handler instance for generation

targetDataset Dataset

RDF dataset to augment

options Object <optional>

Generation options

Source:
Returns:

Results with generated hypotheses and RDF updates

Type
Object

generateNodeAssignments()

Generate node assignments for entities

.

Generate node assignments for entities

Source:

(async) generateNodeEmbedding(node, embeddingHandler, options) → {Promise.<Object>}

Generate embedding for a node

.

Generate embedding for a node

Parameters:
Name Type Description
node Object

Node object

embeddingHandler Object

Embedding handler

options Object

Generation options

Source:
Returns:

Embedding data object

Type
Promise.<Object>

(async) generateResponse(prompt, context, optionsopt) → {Promise.<string>}

Parameters:
Name Type Attributes Description
prompt string

The user's input prompt

context string

Additional context for the prompt

options Object <optional>

Additional options

Properties
Name Type Attributes Description
systemPrompt string <optional>

System prompt to use

model string <optional>

Override the default model

temperature number <optional>

Override the default temperature

Source:
Returns:
Type
Promise.<string>

(async) generateSampleData()

Generate sample data for testing

.

Generate sample data for testing

Source:

(async) generateSampleEntities()

Generate sample entities for testing

.

Generate sample entities for testing

Source:

(async) generateSingleHypothesis(input, llmHandler, options, index) → {Object}

Generate a single hypothesis using the LLM

.

Generate a single hypothesis using the LLM

Parameters:
Name Type Description
input string

Input query or entity URI

llmHandler Object

LLM handler instance

options Object

Generation options

index number

Hypothesis index for variation

Source:
Returns:

Generated hypothesis

Type
Object

generateURI(name, baseURIopt) → {string}

Generate URI for entity based on name (useful for RagnoMemoryStore integration)

.

Generate URI for entity based on name (useful for RagnoMemoryStore integration)

Parameters:
Name Type Attributes Default Description
name string

Entity name

baseURI string <optional>
http://example.org/ragno/

Base URI

Source:
Returns:

Generated URI

Type
string

generateURI(type) → {string}

Generate a unique URI for a given resource type

.

Generate a unique URI for a given resource type

Parameters:
Name Type Description
type string

Resource type (entity, unit, relationship, etc.)

Source:
Returns:

Generated URI

Type
string

generateURI(type) → {string}

Generate a unique URI for this element

.

Generate a unique URI for this element

Parameters:
Name Type Description
type string

Element type

Source:
Returns:

Generated URI

Type
string

(async) generateUnitSummary(unitText, llmHandler) → {Promise.<string>}

Generate summary for a semantic unit

.

Generate summary for a semantic unit

Parameters:
Name Type Description
unitText string

Unit text content

llmHandler Object

LLM handler

Source:
Returns:

Generated summary

Type
Promise.<string>

get()

Retrieve an API instance by name

.

Retrieve an API instance by name

Source:

get(name)

Get a registered validator

.

Get a registered validator

Parameters:
Name Type Description
name string

Validator name

Source:

getAPIRouteHandlers() → {Object}

Get Express.js route handlers for HTTP API

.

Get Express.js route handlers for HTTP API

Source:
Returns:

Route handlers

Type
Object

getAggregationConfig(zoomLevel) → {Object}

Get aggregation requirements for a zoom level

.

Get aggregation requirements for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Aggregation configuration

Type
Object

getAggregationFields(zoomLevel) → {Array.<string>}

Get aggregation fields for a zoom level

.

Get aggregation fields for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Aggregation SPARQL fields

Type
Array.<string>

getAggregationGroupBy(zoomLevel) → {Array.<string>}

Get GROUP BY clause for aggregation

.

Get GROUP BY clause for aggregation

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Fields to group by

Type
Array.<string>

getAggregationMetrics(zoomLevel) → {Array.<Object>}

Get aggregation metrics for a zoom level

.

Get aggregation metrics for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Aggregation metrics configuration

Type
Array.<Object>

getAll()

Get all registered API instances

.

Get all registered API instances

Source:

getAllCustomMetadata() → {Object}

Get all custom metadata properties (excluding standard properties)

.

Get all custom metadata properties (excluding standard properties)

Source:
Returns:

Object with all custom metadata

Type
Object

getAllNamespaces() → {Object}

Get all namespace objects

.

Get all namespace objects

Source:
Returns:

All namespaces

Type
Object

getAllStatistics() → {Object}

Get comprehensive statistics from all algorithm modules

.

Get comprehensive statistics from all algorithm modules

Source:
Returns:

Combined statistics

Type
Object

getAllTypes(zoomLevel) → {Array.<string>}

Get all RDF types for a zoom level (primary + secondary)

.

Get all RDF types for a zoom level (primary + secondary)

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Array of RDF type URIs

Type
Array.<string>

getAlternativeNames() → {Array.<string>}

Get all alternative names for this entity

.

Get all alternative names for this entity

Source:
Returns:

Alternative names

Type
Array.<string>

getAttributes() → {Array.<NamedNode>}

Get all attributes for this entity

.

Get all attributes for this entity

Source:
Returns:

Attribute nodes

Type
Array.<NamedNode>

getAvailableFormats()

Get available formats

.

Get available formats

Source:

getAvailableInstructions()

Get available instruction sets

.

Get available instruction sets

Source:

getAvailableModels() → {Array.<string>}

List available models

.

List available models

Source:
Returns:

Available model names

Type
Array.<string>

(async) getAvailableServices()

Get available services and their status

.

Get available services and their status

Source:

getAvailableStrategies()

Get available chunking strategies

.

Get available chunking strategies

Source:

getAvailableStrategies()

Configuration and info methods

.

Configuration and info methods

Source:

getAvailableTokenizers() → {Array.<string>}

List available tokenizers

.

List available tokenizers

Source:
Returns:

Available tokenizer names

Type
Array.<string>

getBaseFields(zoomLevel) → {Array.<string>}

Get base fields for a zoom level

.

Get base fields for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Base SPARQL fields

Type
Array.<string>

getCacheStats() → {Object}

Get cache statistics

.

Get cache statistics

Source:
Returns:

Cache statistics

Type
Object

getCachedResult()

Cache management methods

.

Cache management methods

Source:

getCategory() → {string|null}

Get the attribute category/type

.

Get the attribute category/type

Source:
Returns:

Attribute category

Type
string | null

getClusters(thresholdopt) → {Array}

Generate cluster assignments for entities

.

Generate cluster assignments for entities

Parameters:
Name Type Attributes Default Description
threshold number <optional>
null

Clustering threshold

Source:
Returns:

Array of cluster assignments

Type
Array

(async) getCommunities()

Get communities from the graph

.

Get communities from the graph

Source:

getConfidence() → {number|null}

Get confidence score for this attribute

.

Get confidence score for this attribute

Source:
Returns:

Confidence score

Type
number | null

getConnectedElements() → {Array.<NamedNode>}

Get all connected elements

.

Get all connected elements

Source:
Returns:

Array of connected element URIs

Type
Array.<NamedNode>

getConnectedUnits() → {Array.<Object>}

Get all connected semantic units

.

Get all connected semantic units

Source:
Returns:

Connected units with relationship info

Type
Array.<Object>

getContent() → {string}

Get content of this element (or empty string if not set)

.

Get content of this element (or empty string if not set)

Source:
Returns:

Content text

Type
string

getContextRecommendation()

Get recommendation based on context utilization

.

Get recommendation based on context utilization

Source:

getCorpus() → {NamedNode|null}

Get corpus association for this attribute

.

Get corpus association for this attribute

Source:
Returns:

Corpus node

Type
NamedNode | null

getCorpus() → {NamedNode|null}

Get corpus association for this entity

.

Get corpus association for this entity

Source:
Returns:

Corpus node

Type
NamedNode | null

getCorpus() → {NamedNode|null}

Get corpus association for this unit

.

Get corpus association for this unit

Source:
Returns:

Corpus node

Type
NamedNode | null

getDefaultConfig(provider) → {Object}

Get default configuration for a provider

.

Get default configuration for a provider

Parameters:
Name Type Description
provider string

Provider name

Source:
Returns:
  • Default configuration object
Type
Object

getDefaultWeights()

Get default priority weights

.

Get default priority weights

Source:

getDefaults()

Get default values for optional parameters

.

Get default values for optional parameters

Source:

getEmbedding() → {Array.<number>|null}

Get vector embedding for this unit

.

Get vector embedding for this unit

Source:
Returns:

Vector embedding

Type
Array.<number> | null

getEndpointInfo()

Configuration and management

.

Configuration and management

Source:

(async) getEntities()

Get entities with optional filtering

.

Get entities with optional filtering

Source:

getEntities() → {Array.<NamedNode>}

Get all entities in the dataset

.

Get all entities in the dataset

Source:
Returns:

Array of entity nodes

Type
Array.<NamedNode>

getEntity() → {NamedNode|null}

Get the entity this attribute describes

.

Get the entity this attribute describes

Source:
Returns:

Entity node

Type
NamedNode | null

getErrorStats()

Statistics and monitoring

.

Statistics and monitoring

Source:

getEvidence() → {Array.<NamedNode>}

Get all evidence sources for this attribute

.

Get all evidence sources for this attribute

Source:
Returns:

Evidence nodes

Type
Array.<NamedNode>

getEvidence() → {Array.<NamedNode>}

Get all evidence sources for this relationship

.

Get all evidence sources for this relationship

Source:
Returns:

Evidence nodes

Type
Array.<NamedNode>

(async) getFeatureMaps()

Get feature maps (U-Matrix, component planes)

.

Get feature maps (U-Matrix, component planes)

Source:

getFilterDocumentation()

Get filter configuration for documentation

.

Get filter configuration for documentation

Source:

getFirstSeen() → {Date|null}

Get first seen timestamp

.

Get first seen timestamp

Source:
Returns:

First seen date

Type
Date | null

getFormatInfo()

Get format information

.

Get format information

Source:

getFrequency() → {number|null}

Get frequency for this entity

.

Get frequency for this entity

Source:
Returns:

Frequency count

Type
number | null

(async) getGraphStats()

Get graph statistics

.

Get graph statistics

Source:

(async) getGridState()

Get current grid state

.

Get current grid state

Source:

(async) getHealth()

Get ZPT system health

.

Get ZPT system health

Source:

getHexagonalVisualCoords(x, y) → {Array}

Get visual coordinates for hexagonal topology

.

Get visual coordinates for hexagonal topology

Parameters:
Name Type Description
x number

Map X coordinate

y number

Map Y coordinate

Source:
Returns:

[visualX, visualY] coordinates

Type
Array

getInfo() → {object}

Get connector information

.

Get connector information

Source:
Returns:
  • Connector metadata
Type
object

getInstructionInfo()

Get instruction set information

.

Get instruction set information

Source:

getJSONLDContext() → {Object}

Create a JSON-LD context object

.

Create a JSON-LD context object

Source:
Returns:

JSON-LD context

Type
Object

getKeywords() → {Array.<string>}

Get all keywords/tags for this attribute

.

Get all keywords/tags for this attribute

Source:
Returns:

Keywords

Type
Array.<string>

getLanguage() → {string|null}

Get language for this attribute

.

Get language for this attribute

Source:
Returns:

Language code

Type
string | null

getLanguage() → {string|null}

Get language for this unit

.

Get language for this unit

Source:
Returns:

Language code

Type
string | null

getLastAccessed() → {Date|null}

Get last accessed timestamp

.

Get last accessed timestamp

Source:
Returns:

Last accessed date

Type
Date | null

getLength() → {number|null}

Get length of this unit in characters

.

Get length of this unit in characters

Source:
Returns:

Character length

Type
number | null

getMentionedEntities() → {Array.<NamedNode>}

Get all entities mentioned by this unit

.

Get all entities mentioned by this unit

Source:
Returns:

Entity nodes

Type
Array.<NamedNode>

getMetadata() → {Object}

Get attribute metadata including ragno-specific properties

.

Get attribute metadata including ragno-specific properties

Source:
Returns:

Attribute metadata

Type
Object

getMetadata() → {Object}

Get entity metadata including ragno-specific properties

.

Get entity metadata including ragno-specific properties

Source:
Returns:

Entity metadata

Type
Object

getMetadata() → {Object}

Get relationship metadata

.

Get relationship metadata

Source:
Returns:

Relationship metadata

Type
Object

getMetadata() → {Object}

Get unit metadata including ragno-specific properties

.

Get unit metadata including ragno-specific properties

Source:
Returns:

Unit metadata

Type
Object

getMetadata() → {Object}

Get element metadata (enhanced to include custom metadata)

.

Get element metadata (enhanced to include custom metadata)

Source:
Returns:

Element metadata including custom properties

Type
Object

getMetadataProperty(property) → {any}

Get a metadata property value

.

Get a metadata property value

Parameters:
Name Type Description
property string

Property name

Source:
Returns:

Property value or undefined

Type
any

getMetrics()

Get collected metrics with timestamps

.

Get collected metrics with timestamps

Source:

(async) getMetrics() → {Object}

Get system metrics

.

Get system metrics

Source:
Returns:

System metrics

Type
Object

(async) getMetrics()

Get chat API metrics

.

Get chat API metrics

Source:

(async) getMetrics()

Get memory API metrics

.

Get memory API metrics

Source:

(async) getMetrics()

Get Ragno API metrics

.

Get Ragno API metrics

Source:

(async) getMetrics()

Get search API metrics

.

Get search API metrics

Source:

(async) getMetrics()

Get unified search metrics

.

Get unified search metrics

Source:

(async) getMetrics()

Get ZPT API metrics

.

Get ZPT API metrics

Source:

getMetrics()

Get selector statistics

.

Get selector statistics

Source:

getMetrics()

Configuration and info methods

.

Configuration and info methods

Source:

getModelInfo(modelName) → {Object}

Get model information

.

Get model information

Parameters:
Name Type Description
modelName string

Model name

Source:
Returns:

Model information

Type
Object

getName() → {string}

Get the name for this entity (or empty string if not set)

.

Get the name for this entity (or empty string if not set)

Source:
Returns:
Type
string

getNamespace(prefix) → {function}

Get specific namespace by prefix

.

Get specific namespace by prefix

Parameters:
Name Type Description
prefix string

Namespace prefix

Source:
Returns:

Namespace function

Type
function

getNeighbors(coords, radius) → {Array}

Get all neighbors of a node within a given radius

.

Get all neighbors of a node within a given radius

Parameters:
Name Type Description
coords Array

[x, y] coordinates of the center node

radius number

Neighborhood radius

Source:
Returns:

Array of neighbor coordinates [[x, y], ...]

Type
Array

getNodeMappings() → {Array}

Get node mappings (entity to map position)

.

Get node mappings (entity to map position)

Source:
Returns:

Array of node mappings

Type
Array

getNodeMetadata(uri) → {Object|null}

Get metadata for a node

.

Get metadata for a node

Parameters:
Name Type Description
uri string

Node URI

Source:
Returns:

Node metadata

Type
Object | null

getNodeMetadata(uri) → {Object|null}

Get node metadata

.

Get node metadata

Parameters:
Name Type Description
uri string

Node URI

Source:
Returns:

Node metadata

Type
Object | null

getNodeType(graph, nodeUri) → {string}

Get the primary ragno type for a node

.

Get the primary ragno type for a node

Parameters:
Name Type Description
graph Object

Graph representation

nodeUri string

Node URI

Source:
Returns:

Node type

Type
string

getNodeWeights(nodeIndex) → {Array}

Get weight vector for a specific map node

.

Get weight vector for a specific map node

Parameters:
Name Type Description
nodeIndex number

Index of the map node

Source:
Returns:

Weight vector

Type
Array

getNodesByType(type, limitopt) → {Array}

Get nodes by type

.

Get nodes by type

Parameters:
Name Type Attributes Description
type string

Ragno type

limit number <optional>

Maximum number of nodes to return

Source:
Returns:

Nodes of the specified type

Type
Array

getNodesByType(type, limitopt) → {Array}

Get nodes by type

.

Get nodes by type

Parameters:
Name Type Attributes Description
type string

Ragno type

limit number <optional>

Maximum number of nodes

Source:
Returns:

Nodes of specified type

Type
Array

getOntologyInfo() → {Object}

Get ontology metadata

.

Get ontology metadata

Source:
Returns:

Ontology information

Type
Object

getOptimalResultLimit(zoomLevel, tokenBudget) → {number}

Get optimal result limit for a zoom level

.

Get optimal result limit for a zoom level

Parameters:
Name Type Default Description
zoomLevel string

The zoom level

tokenBudget number 4000

Available token budget

Source:
Returns:

Recommended result limit

Type
number

(async) getOptions()

Get available navigation options

.

Get available navigation options

Source:

getOtherEntity(entity) → {NamedNode|null}

Get the other entity in this relationship

.

Get the other entity in this relationship

Parameters:
Name Type Description
entity RDFElement | NamedNode | string

Known entity

Source:
Returns:

Other entity

Type
NamedNode | null

getPPRScore() → {number|null}

Get PPR score for this element

.

Get PPR score for this element

Source:
Returns:

PPR score

Type
number | null

getParameterSummary()

Get parameter summary for logging

.

Get parameter summary for logging

Source:

getParserInfo()

Get parser configuration and stats

.

Get parser configuration and stats

Source:

getPerformanceStats() → {Object}

Get performance statistics

.

Get performance statistics

Source:
Returns:

Performance statistics

Type
Object

getPosition() → {number|null}

Get position in source document

.

Get position in source document

Source:
Returns:

Character position

Type
number | null

getPrefLabel() → {string}

Get the SKOS prefLabel for this entity (or empty string if not set)

.

Get the SKOS prefLabel for this entity (or empty string if not set)

Source:
Returns:
Type
string

getPrefLabel() → {string|null}

Get SKOS preferred label

.

Get SKOS preferred label

Source:
Returns:

Label text

Type
string | null

getPreferredLabel() → {string}

Get the preferred label (SKOS prefLabel) for this entity

.

Get the preferred label (SKOS prefLabel) for this entity

Source:
Returns:

The preferred label, or empty string if not set

Type
string

getPrefixes() → {Map}

Get prefix mapping for serialization

.

Get prefix mapping for serialization

Source:
Returns:

Prefix to namespace URI mapping

Type
Map

getPrefixesAsObject() → {Object}

Get prefixes as object for JSON-LD context

.

Get prefixes as object for JSON-LD context

Source:
Returns:

Prefix mapping object

Type
Object

getPrimaryTypes(zoomLevel) → {Array.<string>}

Get primary RDF types for a zoom level

.

Get primary RDF types for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Array of primary RDF type URIs

Type
Array.<string>

getProjectionDocumentation()

Get projection documentation

.

Get projection documentation

Source:

getProvenance() → {Array.<NamedNode>}

Get provenance information for this attribute

.

Get provenance information for this attribute

Source:
Returns:

Provenance nodes

Type
Array.<NamedNode>

getQueryStats()

Get query statistics for optimization

.

Get query statistics for optimization

Source:

getRagnoLocalName(uri) → {string}

Get the local name from a ragno URI

.

Get the local name from a ragno URI

Parameters:
Name Type Description
uri string

Full ragno URI

Source:
Returns:

Local name

Type
string

getRecommendations(zoomLevel, panFilters, tiltRepresentation) → {Array.<string>}

Get optimization recommendations

.

Get optimization recommendations

Parameters:
Name Type Description
zoomLevel string

The zoom level

panFilters Object

Pan filter parameters

tiltRepresentation string

Tilt representation

Source:
Returns:

Optimization recommendations

Type
Array.<string>

getRecommendedTilt(zoomLevel) → {string}

Get recommended tilt representation for a zoom level

.

Get recommended tilt representation for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Recommended tilt representation

Type
string

getRelationshipType() → {string|null}

Get the relationship type

.

Get the relationship type

Source:
Returns:

Relationship type

Type
string | null

getRelationships(optionsopt) → {Array}

Get all relationships involving this entity

.

Get all relationships involving this entity

Parameters:
Name Type Attributes Description
options Object <optional>

Query options

Source:
Returns:

Relationship information

Type
Array

getRelationships() → {Array.<NamedNode>}

Get all relationships in the dataset

.

Get all relationships in the dataset

Source:
Returns:

Array of relationship nodes

Type
Array.<NamedNode>

getRouteHandlers() → {Object}

Get Express.js route handlers

.

Get Express.js route handlers

Source:
Returns:

Route handlers for Express app

Type
Object

getRuleSelectivity()

Get estimated selectivity of a rule

.

Get estimated selectivity of a rule

Source:

getSPARQLPrefixes() → {string}

Generate SPARQL prefixes string

.

Generate SPARQL prefixes string

Source:
Returns:

SPARQL prefix declarations

Type
string

(async) getSchema()

Get parameter schema and examples

.

Get parameter schema and examples

Source:

getSchema()

Get parameter schema for documentation

.

Get parameter schema for documentation

Source:

(async) getSearchStrategies()

Get search strategies information

.

Get search strategies information

Source:

getSelectionStrategy(zoomLevel) → {Object}

Get selection strategy for a zoom level

.

Get selection strategy for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level

Source:
Returns:

Selection strategy configuration

Type
Object

getSimilarityScore() → {number|null}

Get similarity score for this element

.

Get similarity score for this element

Source:
Returns:

Similarity score

Type
number | null

getSourceDocument() → {NamedNode|null}

Get source document for this unit

.

Get source document for this unit

Source:
Returns:

Source document node

Type
NamedNode | null

getSourceEntity() → {NamedNode|null}

Get the source entity for this relationship

.

Get the source entity for this relationship

Source:
Returns:

Source entity node

Type
NamedNode | null

getStatistics() → {Object}

Get current statistics

.

Get current statistics

Source:
Returns:

Current clustering statistics

Type
Object

getStatistics() → {Object}

Get current statistics

.

Get current statistics

Source:
Returns:

Current analysis statistics

Type
Object

getStatistics() → {Object}

Get algorithm statistics

.

Get algorithm statistics

Source:
Returns:

Algorithm statistics

Type
Object

getStatistics() → {Object}

Get current statistics

.

Get current statistics

Source:
Returns:

Current PPR statistics

Type
Object

getStatistics() → {Object}

Get algorithm statistics

.

Get algorithm statistics

Source:
Returns:

VSOM statistics

Type
Object

getStatistics() → {Object}

Get current algorithm statistics

.

Get current algorithm statistics

Source:
Returns:

Performance and usage statistics

Type
Object

getStatistics() → {Object}

Get training statistics

.

Get training statistics

Source:
Returns:

Training statistics

Type
Object

getStatistics() → {Object}

Get search statistics

.

Get search statistics

Source:
Returns:

Current statistics

Type
Object

getStatistics() → {Object}

Get API statistics

.

Get API statistics

Source:
Returns:

API statistics

Type
Object

getStatistics() → {Object}

Get index statistics

.

Get index statistics

Source:
Returns:

Index statistics

Type
Object

getStatistics() → {Object}

Get comprehensive system statistics

.

Get comprehensive system statistics

Source:
Returns:

System statistics

Type
Object

getStats() → {Object}

Get dataset statistics

.

Get dataset statistics

Source:
Returns:

Statistics about the graph

Type
Object

getStats()

Get chunking statistics

.

Get chunking statistics

Source:

getStatus() → {Object}

Get system status

.

Get system status

Source:
Returns:

System status

Type
Object

getStrategyInfo()

Get strategy information

.

Get strategy information

Source:

getSubType() → {string|null}

Get sub-type of this element

.

Get sub-type of this element

Source:
Returns:

Sub-type identifier

Type
string | null

getSummary() → {string|null}

Get summary for this attribute

.

Get summary for this attribute

Source:
Returns:

Summary text

Type
string | null

getSummary() → {string|null}

Get summary for this unit

.

Get summary for this unit

Source:
Returns:

Summary text

Type
string | null

getSummary()

Generate human-readable criteria summary

.

Generate human-readable criteria summary

Source:

getSupportedProviders() → {Array.<string>}

Get list of supported embedding providers

.

Get list of supported embedding providers

Source:
Returns:
  • Array of supported provider names
Type
Array.<string>

getTargetEntity() → {NamedNode|null}

Get the target entity for this relationship

.

Get the target entity for this relationship

Source:
Returns:

Target entity node

Type
NamedNode | null

getTargetTypes()

Get target element types for zoom level

.

Get target element types for zoom level

Source:

getTemporal() → {Date|null}

Get temporal information for this attribute

.

Get temporal information for this attribute

Source:
Returns:

Temporal information

Type
Date | null

getText() → {string|null}

Get the main text content of this attribute

.

Get the main text content of this attribute

Source:
Returns:

Text content

Type
string | null

getText() → {string|null}

Get the main text content of this unit

.

Get the main text content of this unit

Source:
Returns:

Text content

Type
string | null

getTiltFields(tiltRepresentation) → {Array.<string>}

Get tilt-specific fields

.

Get tilt-specific fields

Parameters:
Name Type Description
tiltRepresentation string

The tilt representation

Source:
Returns:

Tilt-specific SPARQL fields

Type
Array.<string>

getTiltOutputFormat()

Get tilt output format

.

Get tilt output format

Source:

getTiltProcessingType()

Get tilt processing type

.

Get tilt processing type

Source:

getTokenizerInfo(tokenizerName) → {Object}

Get tokenizer information

.

Get tokenizer information

Parameters:
Name Type Description
tokenizerName string

Tokenizer name

Source:
Returns:

Tokenizer information

Type
Object

getTopKNodes(scores, kopt) → {Array}

Get nodes with highest scores from analysis results

.

Get nodes with highest scores from analysis results

Parameters:
Name Type Attributes Default Description
scores Map

Node URI -> score mapping

k number <optional>
10

Number of top nodes to return

Source:
Returns:

Top k nodes with scores

Type
Array

getTopKNodes(analysisResults, kopt) → {Object}

Get top-k important nodes across all metrics

.

Get top-k important nodes across all metrics

Parameters:
Name Type Attributes Default Description
analysisResults Object

Results from runFullAnalysis

k number <optional>
10

Number of top nodes to return

Source:
Returns:

Top-k nodes with scores from different algorithms

Type
Object

getTopology() → {Object}

Get topology information

.

Get topology information

Source:
Returns:

Topology information

Type
Object

getTopologyInfo() → {Object}

Get topology information

.

Get topology information

Source:
Returns:

Topology information

Type
Object

(async) getTrainingStatus()

Get training status

.

Get training status

Source:

getTrainingStatus() → {Object}

Get current training status

.

Get current training status

Source:
Returns:

Training status information

Type
Object

getTriples() → {Array}

Get all triples where this element is the subject

.

Get all triples where this element is the subject

Source:
Returns:

Array of quads

Type
Array

getTriplesWithPredicate(predicate) → {Array}

Get all triples with specific predicate

.

Get all triples with specific predicate

Parameters:
Name Type Description
predicate NamedNode

Predicate to match

Source:
Returns:

Array of matching quads

Type
Array

getTurtlePrefixes() → {string}

Generate Turtle prefixes string

.

Generate Turtle prefixes string

Source:
Returns:

Turtle prefix declarations

Type
string

getTypes() → {Array.<NamedNode>}

Get all types of this element

.

Get all types of this element

Source:
Returns:

Array of RDF types

Type
Array.<NamedNode>

getURI() → {string}

Get the URI of this element

.

Get the URI of this element

Source:
Returns:

The URI string

Type
string

getUnits() → {Array.<NamedNode>}

Get all units in the dataset

.

Get all units in the dataset

Source:
Returns:

Array of unit nodes

Type
Array.<NamedNode>

getVisualizationCoordinates(outputFormat) → {Array}

Get visualization coordinates for the map nodes Converts map coordinates to visual coordinates suitable for plotting

.

Get visualization coordinates for the map nodes Converts map coordinates to visual coordinates suitable for plotting

Parameters:
Name Type Default Description
outputFormat string cartesian

'cartesian', 'normalized', 'screen'

Source:
Returns:

Array of coordinate pairs for visualization

Type
Array

getWeight() → {number|null}

Get the weight for this relationship

.

Get the weight for this relationship

Source:
Returns:

Relationship weight

Type
number | null

getZoomDescriptions()

Configuration and documentation helpers

.

Configuration and documentation helpers

Source:

getZoomGranularity()

Get zoom granularity level

.

Get zoom granularity level

Source:

getZoomLevelDocumentation() → {Object}

Get zoom level metadata for API documentation

.

Get zoom level metadata for API documentation

Source:
Returns:

Complete zoom level documentation

Type
Object

getZoomMapping(zoomLevel) → {Object}

Get mapping configuration for a zoom level

.

Get mapping configuration for a zoom level

Parameters:
Name Type Description
zoomLevel string

The zoom level (corpus, community, unit, entity, text)

Source:
Returns:

Zoom level configuration

Type
Object

groupNodesByType(graph, scores) → {Map}

Group nodes by their ragno ontology type

.

Group nodes by their ragno ontology type

Parameters:
Name Type Description
graph Object

Graph representation

scores Map

Node scores

Source:
Returns:

Type to node scores mapping

Type
Map

(async) handleDualSearch(req, res)

Main dual search endpoint handler

.

Main dual search endpoint handler

Parameters:
Name Type Description
req Object

Express request object

res Object

Express response object

Source:

(async) handleEntityDetails(req, res)

Entity details endpoint handler

.

Entity details endpoint handler

Parameters:
Name Type Description
req Object

Express request object

res Object

Express response object

Source:

(async) handleError(error, req, res, context)

Main error handling method

.

Main error handling method

Parameters:
Name Type Description
error Error

The error to handle

req Object

HTTP request object

res Object

HTTP response object

context Object

Additional context

Source:

(async) handleExactSearch(req, res)

Exact search endpoint handler

.

Exact search endpoint handler

Parameters:
Name Type Description
req Object

Express request object

res Object

Express response object

Source:

(async) handleGraphStats(req, res)

Graph statistics endpoint handler

.

Graph statistics endpoint handler

Parameters:
Name Type Description
req Object

Express request object

res Object

Express response object

Source:

(async) handleHealth()

Handle health check requests

.

Handle health check requests

Source:

(async) handleMetrics()

Handle metrics requests

.

Handle metrics requests

Source:

(async) handleNavigate()

Handle main navigation requests

.

Handle main navigation requests

Source:

(async) handleOptions()

Handle options requests

.

Handle options requests

Source:

(async) handlePreview()

Handle preview requests (limited processing)

.

Handle preview requests (limited processing)

Source:

(async) handleRequest(req, res)

Main request handler - routes requests to appropriate endpoints

.

Main request handler - routes requests to appropriate endpoints

Parameters:
Name Type Description
req Object

HTTP request object

res Object

HTTP response object

Source:

(async) handleSchema()

Handle schema requests

.

Handle schema requests

Source:

(async) handleSearchStats(req, res)

Search statistics endpoint handler

.

Search statistics endpoint handler

Parameters:
Name Type Description
req Object

Express request object

res Object

Express response object

Source:

(async) handleSearchStatus(req, res)

Search status endpoint handler

.

Search status endpoint handler

Parameters:
Name Type Description
req Object

Express request object

res Object

Express response object

Source:

(async) handleSimilaritySearch(req, res)

Vector similarity search endpoint handler

.

Vector similarity search endpoint handler

Parameters:
Name Type Description
req Object

Express request object

res Object

Express response object

Source:

(async) handleTraversalSearch(req, res)

PPR traversal search endpoint handler

.

PPR traversal search endpoint handler

Parameters:
Name Type Description
req Object

Express request object

res Object

Express response object

Source:

hasFilters()

Check if pan has any active filters

.

Check if pan has any active filters

Source:

hasNode(uri) → {boolean}

Check if a node exists in the index

.

Check if a node exists in the index

Parameters:
Name Type Description
uri string

Node URI

Source:
Returns:

True if node exists

Type
boolean

hasNode(uri) → {boolean}

Check if node exists in index

.

Check if node exists in index

Parameters:
Name Type Description
uri string

Node URI

Source:
Returns:

True if node exists

Type
boolean

hasRelationshipWith(otherEntity) → {boolean}

Check if this entity has a relationship with another entity

.

Check if this entity has a relationship with another entity

Parameters:
Name Type Description
otherEntity Entity | NamedNode | string

Other entity to check

Source:
Returns:

True if relationship exists

Type
boolean

hasStructure()

Utility methods

.

Utility methods

Source:

hasType(type) → {boolean}

Check if this element has a specific type

.

Check if this element has a specific type

Parameters:
Name Type Description
type NamedNode

RDF type to check

Source:
Returns:

True if element has this type

Type
boolean

hashObject(obj) → {string}

Hash object for cache key generation

.

Hash object for cache key generation

Parameters:
Name Type Description
obj Object

Object to hash

Source:
Returns:

Hash string

Type
string

hashObject()

Simple hash function for cache keys

.

Simple hash function for cache keys

Source:

(async) hierarchicalChunking()

Hierarchical chunking strategy

.

Hierarchical chunking strategy

Source:

(async) identifyImportantEntities(graphData, method, topK, minScore) → {Promise.<Array>}

Identify important entities using graph analysis algorithms

.

Identify important entities using graph analysis algorithms

Parameters:
Name Type Description
graphData Object

Graph data with entities and relationships

method string

Importance calculation method

topK number

Number of top entities to select

minScore number

Minimum importance score threshold

Source:
Returns:

Array of important entity data objects

Type
Promise.<Array>

(async) identifyRetrievableNodes(graphData, retrievableTypes) → {Promise.<Array>}

Identify retrievable nodes from graph data

.

Identify retrievable nodes from graph data

Parameters:
Name Type Description
graphData Object

Graph data

retrievableTypes Array.<string>

Types to include

Source:
Returns:

Array of retrievable node objects

Type
Promise.<Array>

incrementFrequency(incrementopt)

Increment frequency counter

.

Increment frequency counter

Parameters:
Name Type Attributes Default Description
increment number <optional>
1

Amount to increment

Source:

(async) indexContent()

Index content for search

.

Index content for search

Source:

indexToCoordinates(index) → {Array}

Convert linear index to 2D map coordinates

.

Convert linear index to 2D map coordinates

Parameters:
Name Type Description
index number

Linear index

Source:
Returns:

[x, y] coordinates

Type
Array

indexToCoordinates(index) → {Array}

Convert linear index to 2D coordinates

.

Convert linear index to 2D coordinates

Parameters:
Name Type Description
index number

Linear index

Source:
Returns:

[x, y] coordinates

Type
Array

init()

Initialize the VSOM feature

.

Initialize the VSOM feature

Source:

initChatForms()

Initialize chat functionality

.

Initialize chat functionality

Source:

initMCPClient()

Initialize MCP Client

.

Initialize MCP Client

Source:

initRangeInputs()

Initialize range inputs with value display

.

Initialize range inputs with value display

Source:

initSettingsForm()

Initialize settings form

.

Initialize settings form

Source:

initTabs()

Initialize tab navigation

.

Initialize tab navigation

Source:

(async, abstract) initialize()

Initialize the API instance

.

Initialize the API instance

Source:

(async) initialize() → {Promise.<void>}

Initialize the Claude client

.

Initialize the Claude client

Source:
Returns:
Type
Promise.<void>

(async) initialize()

Initialize the Claude client

.

Initialize the Claude client

Source:

(async) initialize() → {Promise.<void>}

Initialize the Mistral client

.

Initialize the Mistral client

Source:
Returns:
Type
Promise.<void>

(async) initialize()

Initialize the Nomic client

.

Initialize the Nomic client

Source:

(async) initialize()

Initialize the Ollama client

.

Initialize the Ollama client

Source:

(async) initialize(optionsopt)

Initialize the complete search system

.

Initialize the complete search system

Parameters:
Name Type Attributes Description
options Object <optional>

Initialization options

Source:

(async) initialize(dependencies)

Initialize dependencies

.

Initialize dependencies

Parameters:
Name Type Description
dependencies Object

Required components

Source:

initializeApp()

Initialize the entire application

.

Initialize the entire application

Source:

(async) initializeAtuin()

Initialize Atuin components and real event bus

.

Initialize Atuin components and real event bus

Source:

initializeBoundaryDetectors()

Initialize boundary detection patterns

.

Initialize boundary detection patterns

Source:

initializeChunkingStrategies()

Initialize different chunking strategies

.

Initialize different chunking strategies

Source:

initializeCompressionLevels()

Initialize compression levels

.

Initialize compression levels

Source:

initializeDefaultRules()

Initialize default selection rules

.

Initialize default selection rules

Source:

initializeDefaults()

Initialize default values for parameters

.

Initialize default values for parameters

Source:

initializeDomainPatterns()

Initialize domain-specific patterns and vocabularies

.

Initialize domain-specific patterns and vocabularies

Source:

initializeEncodingStrategies()

Initialize metadata encoding strategies

.

Initialize metadata encoding strategies

Source:

initializeEndpoints()

Initialize endpoint configurations

.

Initialize endpoint configurations

Source:

initializeErrorCodes()

Initialize specific error codes

.

Initialize specific error codes

Source:

initializeErrorTypes()

Initialize error type definitions

.

Initialize error type definitions

Source:

initializeFilterStrategies()

Initialize filtering strategies for different pan dimensions

.

Initialize filtering strategies for different pan dimensions

Source:

initializeFormats()

Initialize available output formats

.

Initialize available output formats

Source:

initializeFormatters()

Initialize response formatters for different content types

.

Initialize response formatters for different content types

Source:

initializeInstructions()

Initialize instruction sets for different use cases

.

Initialize instruction sets for different use cases

Source:

(async) initializeLLMProvider()

Initialize the appropriate LLM provider based on config

.

Initialize the appropriate LLM provider based on config

Source:

initializeLinearWeights()

Initialize weights with linear interpolation across map

.

Initialize weights with linear interpolation across map

Source:

initializeMetadataSchemas()

Initialize metadata schemas for different contexts

.

Initialize metadata schemas for different contexts

Source:

initializeModelMappings()

Initialize model-specific token counting configurations

.

Initialize model-specific token counting configurations

Source:

initializeNamespaces()

Initialize namespace prefixes for SPARQL queries

.

Initialize namespace prefixes for SPARQL queries

Source:

initializeOutputFormats()

Initialize output format specifications

.

Initialize output format specifications

Source:

initializePCAWeights()

Initialize weights using PCA (placeholder - would need input data)

.

Initialize weights using PCA (placeholder - would need input data)

Source:

initializePipeline()

Initialize transformation pipeline stages

.

Initialize transformation pipeline stages

Source:

initializeProjectionStrategies()

Initialize projection strategies for each tilt representation

.

Initialize projection strategies for each tilt representation

Source:

initializeQueryTemplates()

Initialize SPARQL query templates for different zoom levels

.

Initialize SPARQL query templates for different zoom levels

Source:

initializeRandomWeights()

Initialize weights with random values (Gaussian distribution)

.

Initialize weights with random values (Gaussian distribution)

Source:

initializeRecoveryStrategies()

Initialize error recovery strategies

.

Initialize error recovery strategies

Source:

initializeSchemas()

Initialize parameter schemas based on ZPT specification

.

Initialize parameter schemas based on ZPT specification

Source:

initializeSelectionStrategies()

Initialize selection strategies for each zoom level

.

Initialize selection strategies for each zoom level

Source:

initializeTemplates()

Initialize response templates

.

Initialize response templates

Source:

initializeTemplates()

Initialize formatting templates

.

Initialize formatting templates

Source:

initializeTokenizers()

Initialize available tokenizers and their configurations

.

Initialize available tokenizers and their configurations

Source:

initializeValidators()

Initialize request validators

.

Initialize request validators

Source:

initializeWeights(mapSize, inputDimension, initMethod)

Initialize the SOM weight matrix with random values

.

Initialize the SOM weight matrix with random values

Parameters:
Name Type Default Description
mapSize Array

[width, height] dimensions

inputDimension number

Dimension of input vectors

initMethod string random

Initialization method ('random', 'linear', 'pca')

Source:

initializeZoomMappings()

Initialize zoom level to RDF type mappings

.

Initialize zoom level to RDF type mappings

Source:

integrateWithGraphAnalytics(graphResults) → {Object}

Integrate with GraphAnalytics results

.

Integrate with GraphAnalytics results

Parameters:
Name Type Description
graphResults Object

Results from GraphAnalytics

Source:
Returns:

Integration results

Type
Object

(async) integrateWithHyde(hydeResults) → {Object}

Integrate with Hyde algorithm results

.

Integrate with Hyde algorithm results

Parameters:
Name Type Description
hydeResults Object

Results from Hyde algorithm

Source:
Returns:

Integration results

Type
Object

involves(entity) → {boolean}

Check if this relationship involves a specific entity

.

Check if this relationship involves a specific entity

Parameters:
Name Type Description
entity RDFElement | NamedNode | string

Entity to check

Source:
Returns:

True if entity is source or target

Type
boolean

isAvailable() → {boolean}

Check if the connector is available

.

Check if the connector is available

Source:
Returns:
  • Whether the connector can be used
Type
boolean

isCode()

Detect if text is likely code

.

Detect if text is likely code

Source:

isEntryPoint() → {boolean}

Check if this element is an entry point

.

Check if this element is an entry point

Source:
Returns:

Entry point status

Type
boolean

isProviderSupported(provider) → {boolean}

Check if a provider is supported

.

Check if a provider is supported

Parameters:
Name Type Description
provider string

Provider name to check

Source:
Returns:
  • Whether the provider is supported
Type
boolean

isRagnoClass(uri) → {boolean}

Check if a URI is a ragno class

.

Check if a URI is a ragno class

Parameters:
Name Type Description
uri string

URI to check

Source:
Returns:

True if ragno class

Type
boolean

isRagnoProperty(uri) → {boolean}

Check if a URI is a ragno property

.

Check if a URI is a ragno property

Parameters:
Name Type Description
uri string

URI to check

Source:
Returns:

True if ragno property

Type
boolean

isRagnoURI(uri) → {boolean}

Check if a URI belongs to the ragno namespace

.

Check if a URI belongs to the ragno namespace

Parameters:
Name Type Description
uri string

URI to check

Source:
Returns:

True if ragno namespace

Type
boolean

isRelevantAt(date) → {boolean}

Check if this attribute is relevant to a specific time period

.

Check if this attribute is relevant to a specific time period

Parameters:
Name Type Description
date Date

Date to check

Source:
Returns:

True if attribute is relevant at the given date

Type
boolean

isStopWord(word) → {boolean}

Check if word is a stop word

.

Check if word is a stop word

Parameters:
Name Type Description
word string

Word to check

Source:
Returns:

True if stop word

Type
boolean

isStopWord(word) → {boolean}

Check if word is a stop word

.

Check if word is a stop word

Parameters:
Name Type Description
word string

Word to check

Source:
Returns:

True if stop word

Type
boolean

isValidCoordinate(x, y) → {boolean}

Check if coordinates are valid for the current map

.

Check if coordinates are valid for the current map

Parameters:
Name Type Description
x number

X coordinate

y number

Y coordinate

Source:
Returns:

True if coordinates are valid

Type
boolean

(async) listInstances()

List all VSOM instances

.

List all VSOM instances

Source:

loadChatProviders()

Load chat providers (legacy function for compatibility)

.

Load chat providers (legacy function for compatibility)

Source:

(async) loadConfigFromServer()

Load config from server and populate UI

.

Load config from server and populate UI

Source:

(async) loadData()

Load data into a VSOM instance

.

Load data into a VSOM instance

Source:

(async) loadFromEntities(entities, embeddingHandler, optionsopt) → {Promise.<Object>}

Load entities from an array with embedding generation

.

Load entities from an array with embedding generation

Parameters:
Name Type Attributes Description
entities Array

Array of Entity objects or entity data

embeddingHandler Object

Embedding handler for vector generation

options Object <optional>

Loading options

Source:
Returns:

Loading results

Type
Promise.<Object>

(async) loadFromRagno()

Load concept graph from SPARQL on initialization

.

Load concept graph from SPARQL on initialization

Source:

(async) loadFromSPARQL(endpoint, query, embeddingHandler, optionsopt) → {Promise.<Object>}

Load entities from SPARQL endpoint

.

Load entities from SPARQL endpoint

Parameters:
Name Type Attributes Description
endpoint string

SPARQL endpoint URL

query string

SPARQL query to retrieve entities

embeddingHandler Object

Embedding handler for vector generation

options Object <optional>

Loading options

Source:
Returns:

Loading results

Type
Promise.<Object>

(async) loadFromVectorIndex(vectorIndex, filtersopt) → {Promise.<Object>}

Load entities from existing VectorIndex

.

Load entities from existing VectorIndex

Parameters:
Name Type Attributes Description
vectorIndex Object

VectorIndex instance

filters Object <optional>

Filters to apply

Source:
Returns:

Loading results

Type
Promise.<Object>

(async) loadIndex(indexPath, metadataPath)

Load index from file

.

Load index from file

Parameters:
Name Type Description
indexPath string

Path to HNSW index file

metadataPath string

Path to metadata file

Source:

loadSettings()

Load saved settings from localStorage

.

Load saved settings from localStorage

Source:

(async) loadVectorIndex()

Load vector index from disk

.

Load vector index from disk

Source:

localMovingPhase(graph, nodeToCommId, options) → {Object}

Local moving phase of Leiden algorithm

.

Local moving phase of Leiden algorithm

Parameters:
Name Type Description
graph Object

Graph representation

nodeToCommId Map

Current node to community mapping

options Object

Algorithm options

Source:
Returns:

Updated node to community mapping

Type
Object

logTrainingProgress(iteration, learningRate, neighborhoodRadius, results)

Log training progress

.

Log training progress

Parameters:
Name Type Description
iteration number

Current iteration

learningRate number

Learning rate

neighborhoodRadius number

Neighborhood radius

results Object

Iteration results

Source:

manhattanDistance(vector1, vector2) → {number}

Calculate Manhattan distance

.

Calculate Manhattan distance

Parameters:
Name Type Description
vector1 Array

First vector

vector2 Array

Second vector

Source:
Returns:

Manhattan distance

Type
number

matchEndpoint()

Request routing and validation

.

Request routing and validation

Source:

matchesFilters(properties, filters) → {boolean}

Check if properties match specified filters

.

Check if properties match specified filters

Parameters:
Name Type Description
properties Object

Entity properties

filters Object

Filter criteria

Source:
Returns:

Whether properties match filters

Type
boolean

mergeSmallChunks()

Merge small consecutive chunks

.

Merge small consecutive chunks

Source:

Main navigation operation

.

Main navigation operation

Source:

normalize(params) → {Object}

Normalize complete parameter object

.

Normalize complete parameter object

Parameters:
Name Type Description
params Object

Raw navigation parameters

Source:
Returns:

Normalized parameters

Type
Object

normalizeContent()

Normalize content input to a standard format

.

Normalize content input to a standard format

Source:

normalizeCoordinates(x, y) → {Array}

Normalize coordinates according to boundary conditions

.

Normalize coordinates according to boundary conditions

Parameters:
Name Type Description
x number

X coordinate

y number

Y coordinate

Source:
Returns:

Normalized coordinates [x, y]

Type
Array

normalizeEntityFilter()

Normalize entity filter

.

Normalize entity filter

Source:

normalizeError()

Normalize error into standard format

.

Normalize error into standard format

Source:

normalizeGeographicFilter()

Normalize geographic filter

.

Normalize geographic filter

Source:

normalizePan()

Normalize pan parameter with filters

.

Normalize pan parameter with filters

Source:

normalizePath()

Utility methods

.

Utility methods

Source:

normalizeTemporalFilter()

Normalize temporal filter

.

Normalize temporal filter

Source:

normalizeTilt()

Normalize tilt parameter

.

Normalize tilt parameter

Source:

normalizeTopicFilter()

Normalize topic filter

.

Normalize topic filter

Source:

normalizeTransform()

Normalize transform parameter with defaults

.

Normalize transform parameter with defaults

Source:

normalizeZoom()

Normalize zoom parameter

.

Normalize zoom parameter

Source:

offsetToCube(col, row) → {Object}

Convert offset coordinates to cube coordinates (for hexagonal topology)

.

Convert offset coordinates to cube coordinates (for hexagonal topology)

Parameters:
Name Type Description
col number

Column (x coordinate)

row number

Row (y coordinate)

Source:
Returns:

Cube coordinates {x, y, z}

Type
Object

optimizeCriteria()

Optimize criteria for performance

.

Optimize criteria for performance

Source:

optimizeIndex(optionsopt)

Optimize index performance

.

Optimize index performance

Parameters:
Name Type Attributes Description
options Object <optional>

Optimization options

Source:

optimizeTokenUsage(content, tokenBudget, strategy) → {Object}

Optimize token usage for a given budget

.

Optimize token usage for a given budget

Parameters:
Name Type Default Description
content Array.<Object>

Content items with token counts

tokenBudget number

Available token budget

strategy string priority

Optimization strategy

Source:
Returns:

Optimization result

Type
Object

optimizeVectorIndex(optionsopt)

Optimize vector index

.

Optimize vector index

Parameters:
Name Type Attributes Description
options Object <optional>

Optimization options

Source:

(async) parse(req) → {Promise.<Object>}

Main parsing method - extracts and normalizes request data

.

Main parsing method - extracts and normalizes request data

Parameters:
Name Type Description
req Object

HTTP request object

Source:
Returns:

Parsed request data

Type
Promise.<Object>

(async) parseBody()

Parse request body based on content type

.

Parse request body based on content type

Source:

(async) parseComponents()

Parse all request components

.

Parse all request components

Source:

parseCookies()

Parse cookies from header

.

Parse cookies from header

Source:

parseEntityExtractionResponse(response) → {Array}

Parse LLM response for extracted entities

.

Parse LLM response for extracted entities

Parameters:
Name Type Description
response string

LLM response

Source:
Returns:

Extracted entity names

Type
Array

parseFormBody()

Parse form-encoded body

.

Parse form-encoded body

Source:

parseHeaders()

Parse request headers

.

Parse request headers

Source:

parseJsonBody()

Parse JSON body

.

Parse JSON body

Source:

parseJsonResponse(responseText) → {Object}

Attempt to parse JSON with syntax resolution

This is a convenience method that combines resolveSyntax with JSON.parse and provides detailed error information.

Attempt to parse JSON with syntax resolution

This is a convenience method that combines resolveSyntax with JSON.parse and provides detailed error information.

Parameters:
Name Type Description
responseText string

Raw LLM response text

Source:
Returns:
  • {success: boolean, data?: any, error?: string, cleaned?: string}
Type
Object

parseMultipartBody()

Parse multipart form data (simplified implementation)

.

Parse multipart form data (simplified implementation)

Source:

parseMultipartPart()

Parse individual multipart part

.

Parse individual multipart part

Source:

parseQueryParams()

Parse query parameters from URL

.

Parse query parameters from URL

Source:

parseQueryResults()

Parse SPARQL query results into corpuscle objects

.

Parse SPARQL query results into corpuscle objects

Source:

(async) performClustering()

Perform clustering on the SOM

.

Perform clustering on the SOM

Source:

(async) performExactMatch(queryData, options) → {Array}

Perform exact matching via SPARQL

.

Perform exact matching via SPARQL

Parameters:
Name Type Description
queryData Object

Processed query data

options Object

Search options

Source:
Returns:

Exact match results

Type
Array

(async) performHealthCheck()

Perform a health check with timeout

.

Perform a health check with timeout

Source:

(async) performPPRTraversal(queryEntities, options) → {Object}

Perform PPR traversal for graph-based discovery

.

Perform PPR traversal for graph-based discovery

Parameters:
Name Type Description
queryEntities Array

Starting entity URIs

options Object

Traversal options

Source:
Returns:

PPR traversal results

Type
Object

(async) performVectorSimilarity(queryData, options) → {Array}

Perform vector similarity search

.

Perform vector similarity search

Parameters:
Name Type Description
queryData Object

Processed query data

options Object

Search options

Source:
Returns:

Vector similarity results

Type
Array

populateSettingsFromConfig()

Populate settings form from server config

.

Populate settings form from server config

Source:

postProcessChunks()

Post-process chunks for optimization

.

Post-process chunks for optimization

Source:

(async) postProcessCorpuscles()

Post-process selected corpuscles

.

Post-process selected corpuscles

Source:

(async) preciseTokenCount(text, tokenizerName) → {Promise.<Object>}

Precise token counting using actual tokenizer

.

Precise token counting using actual tokenizer

Parameters:
Name Type Description
text string

Text to tokenize

tokenizerName string

Tokenizer to use

Source:
Returns:

Precise token count

Type
Promise.<Object>

(async) preview()

Navigation preview (limited processing)

.

Navigation preview (limited processing)

Source:

(async) processConcepts()

Process concept operations in batch

.

Process concept operations in batch

Source:

(async) processEntityData()

Process entity data format

.

Process entity data format

Source:

(async) processQuery(input, llmHandler, targetDataset, options) → {Object}

Process a single query or input to generate hypotheses

.

Process a single query or input to generate hypotheses

Parameters:
Name Type Description
input string

Query string or entity URI

llmHandler Object

LLM handler instance

targetDataset Dataset

RDF dataset to augment

options Object

Processing options

Source:
Returns:

Processing results

Type
Object

(async) processQuery(query, options) → {Object}

Process natural language query to extract entities and generate embeddings

.

Process natural language query to extract entities and generate embeddings

Parameters:
Name Type Description
query string

Original query string

options Object

Processing options

Source:
Returns:

Processed query data

Type
Object

(async) processRelationships()

Process relationship operations in batch

.

Process relationship operations in batch

Source:

processResults(graph, scores, entryPoints, options) → {Object}

Process PPR results and generate rankings

.

Process PPR results and generate rankings

Parameters:
Name Type Description
graph Object

Graph representation

scores Map

PPR probability scores

entryPoints Array

Original entry points

options Object

Algorithm options

Source:
Returns:

Processed results

Type
Object

processSPARQLResults(sparqlResults) → {Array}

Process SPARQL results into entity format

.

Process SPARQL results into entity format

Parameters:
Name Type Description
sparqlResults Array

SPARQL query results

Source:
Returns:

Processed entities

Type
Array

(async) processSparqlData()

Process SPARQL data format

.

Process SPARQL data format

Source:

(async) project(corpuscles, tiltParams, context) → {Promise.<Object>}

Main projection method - transforms corpuscles based on tilt representation

.

Main projection method - transforms corpuscles based on tilt representation

Parameters:
Name Type Description
corpuscles Array

Selected corpuscles to transform

tiltParams Object

Normalized tilt parameters

context Object

Projection context and dependencies

Source:
Returns:

Projected representation

Type
Promise.<Object>

(async) projectToEmbedding()

Project corpuscles to embedding representation

.

Project corpuscles to embedding representation

Source:

(async) projectToGraph()

Project corpuscles to graph representation

.

Project corpuscles to graph representation

Source:

(async) projectToKeywords()

Project corpuscles to keyword representation

.

Project corpuscles to keyword representation

Source:

(async) projectToTemporal()

Project corpuscles to temporal representation

.

Project corpuscles to temporal representation

Source:

pruneContext()

Remove old or low-relevance items from context

.

Remove old or low-relevance items from context

Source:

query(subjectopt, predicateopt, objectopt) → {Array}

Query the dataset using SPARQL-like patterns

.

Query the dataset using SPARQL-like patterns

Parameters:
Name Type Attributes Default Description
subject NamedNode <optional>
null

Subject pattern (null for any)

predicate NamedNode <optional>
null

Predicate pattern (null for any)

object NamedNode | Literal <optional>
null

Object pattern (null for any)

Source:
Returns:

Array of matching quads

Type
Array

(async) queryByZoomLevel(queryConfig) → {Promise.<Array>}

Execute ZPT query by zoom level with filters

.

Execute ZPT query by zoom level with filters

Parameters:
Name Type Description
queryConfig Object

Configuration with zoomLevel, filters, limit

Source:
Returns:

Query results

Type
Promise.<Array>

(async) queryHypotheses()

Query hypothetical content from the knowledge graph

.

Query hypothetical content from the knowledge graph

Source:

queryHypotheticalContent(dataset, filtersopt) → {Array}

Query hypothetical content from RDF dataset

.

Query hypothetical content from RDF dataset

Parameters:
Name Type Attributes Description
dataset Dataset

RDF dataset to query

filters Object <optional>

Query filters

Source:
Returns:

Hypothetical content matching filters

Type
Array

queryHypotheticalContent(dataset, filtersopt) → {Array}

Query hypothetical content from dataset

.

Query hypothetical content from dataset

Parameters:
Name Type Attributes Description
dataset Dataset

RDF dataset to query

filters Object <optional>

Query filters

Source:
Returns:

Hypothetical content matching filters

Type
Array

queueSync()

Queue a sync operation for batch processing

.

Queue a sync operation for batch processing

Source:

(async) rankBySimilarity()

Rank corpuscles by embedding similarity

.

Rank corpuscles by embedding similarity

Source:

(async) readRawBody()

Read raw body data from request stream

.

Read raw body data from request stream

Source:

recordIteration(iteration, learningRate, neighborhoodRadius, results)

Record iteration results

.

Record iteration results

Parameters:
Name Type Description
iteration number

Current iteration

learningRate number

Learning rate used

neighborhoodRadius number

Neighborhood radius used

results Object

Iteration results

Source:

(async) recoverFromValidationError()

Recovery strategy implementations

.

Recovery strategy implementations

Source:

recursive(validator, options)

Create a recursive validator for nested structures

.

Create a recursive validator for nested structures

Parameters:
Name Type Description
validator string | Object

Base validator

options Object

Recursion options

Source:

refinementPhase(graph, nodeToCommId, options) → {Object}

Refinement phase to ensure well-connected communities

.

Refinement phase to ensure well-connected communities

Parameters:
Name Type Description
graph Object

Graph representation

nodeToCommId Map

Current node to community mapping

options Object

Algorithm options

Source:
Returns:

Refined node to community mapping

Type
Object

(async) register()

Register and initialize a new API implementation

.

Register and initialize a new API implementation

Source:

register(name, validator)

Register a new validator

.

Register a new validator

Parameters:
Name Type Description
name string

Validator name

validator Object

Validator definition

Source:

registerBatch(validators)

Register multiple validators

.

Register multiple validators

Parameters:
Name Type Description
validators Object

Map of validator names to definitions

Source:

removeNamespace(prefix)

Remove a namespace

.

Remove a namespace

Parameters:
Name Type Description
prefix string

Namespace prefix to remove

Source:

removeNode(uri) → {boolean}

Remove a node from the index

.

Remove a node from the index

Parameters:
Name Type Description
uri string

URI of the node to remove

Source:
Returns:

True if node was removed

Type
boolean

removeNodeFromIndex(uri) → {boolean}

Remove node from vector index

.

Remove node from vector index

Parameters:
Name Type Description
uri string

Node URI

Source:
Returns:

True if removed

Type
boolean

removeTriple(predicate, objectopt)

Remove a triple from the dataset

.

Remove a triple from the dataset

Parameters:
Name Type Attributes Default Description
predicate NamedNode

Predicate

object NamedNode | Literal <optional>
null

Object (optional for removing all)

Source:

reset()

Reset VSOM state

.

Reset VSOM state

Source:

reset()

Reset training state

.

Reset training state

Source:

reset()

Clear cache and reset metrics

.

Clear cache and reset metrics

Source:

resetStatistics()

Reset algorithm statistics

.

Reset algorithm statistics

Source:

resetStatistics()

Reset all statistics

.

Reset all statistics

Source:

resetStatistics()

Reset algorithm statistics

.

Reset algorithm statistics

Source:

resetStats()

Reset statistics

.

Reset statistics

Source:

resolve(prefixedName) → {string}

Resolve a prefixed name to full URI

.

Resolve a prefixed name to full URI

Parameters:
Name Type Description
prefixedName string

Name like "ragno:Entity"

Source:
Returns:

Full URI

Type
string

resolveSyntax(responseText) → {string|false}

Resolve and clean JSON syntax from LLM responses

This method handles common patterns where LLMs wrap JSON in markdown code fences or add explanatory text around the JSON content.

Resolve and clean JSON syntax from LLM responses

This method handles common patterns where LLMs wrap JSON in markdown code fences or add explanatory text around the JSON content.

Parameters:
Name Type Description
responseText string

Raw LLM response text

Source:
Returns:
  • Cleaned JSON string if pattern matches, false otherwise
Type
string | false

(async, abstract) retrieveInteractions(query)

Retrieve interactions

.

Retrieve interactions

Parameters:
Name Type Description
query Object

Query parameters

Source:

(async) retrieveInteractions()

Retrieve interactions from memory

.

Retrieve interactions from memory

Source:

(async) retrieveInteractions()

Retrieve interactions (inherited from BaseAPI)

.

Retrieve interactions (inherited from BaseAPI)

Source:

(async) retrieveInteractions()

Retrieve interactions (inherited from BaseAPI)

.

Retrieve interactions (inherited from BaseAPI)

Source:

(async) retrieveInteractions()

Retrieve interactions (inherited from BaseAPI)

.

Retrieve interactions (inherited from BaseAPI)

Source:

runDeepPPR(graph, entryPoints, optionsopt) → {Object}

Run deep PPR for comprehensive traversal

.

Run deep PPR for comprehensive traversal

Parameters:
Name Type Attributes Description
graph Object

Graph representation

entryPoints Array

Entry point node URIs

options Object <optional>

Algorithm options

Source:
Returns:

Deep PPR results

Type
Object

(async) runEntityClustering(entities, embeddingHandler, optionsopt) → {Promise.<Object>}

Run entity clustering using VSOM

.

Run entity clustering using VSOM

Parameters:
Name Type Attributes Description
entities Array

Array of entities to cluster

embeddingHandler Object

Embedding handler for vector generation

options Object <optional>

VSOM options

Source:
Returns:

Clustering results

Type
Promise.<Object>

(async) runFullAnalysis(dataset, optionsopt) → {Object}

Run complete graph analysis pipeline

.

Run complete graph analysis pipeline

Parameters:
Name Type Attributes Description
dataset Dataset

RDF-Ext dataset

options Object <optional>

Analysis options

Source:
Returns:

Complete analysis results

Type
Object

(async) runFullPipeline()

Run full ragno pipeline

.

Run full ragno pipeline

Source:

(async) runHydeGeneration(inputs, llmHandler, targetDataset, optionsopt) → {Object}

Run HyDE hypothesis generation

.

Run HyDE hypothesis generation

Parameters:
Name Type Attributes Description
inputs Array | string

Query strings or entity URIs

llmHandler Object

LLM handler instance

targetDataset Dataset

RDF dataset to augment

options Object <optional>

Hyde options

Source:
Returns:

Hyde generation results

Type
Object

runPPR(graph, entryPoints, optionsopt) → {Object}

Run Personalized PageRank from entry points

.

Run Personalized PageRank from entry points

Parameters:
Name Type Attributes Description
graph Object

Graph representation from GraphAnalytics

entryPoints Array

Array of entry point node URIs

options Object <optional>

Algorithm options

Source:
Returns:

PPR results with scores and rankings

Type
Object

(async) runSemanticSearch(dataset, queryEntities, optionsopt) → {Object}

Run semantic search using PPR

.

Run semantic search using PPR

Parameters:
Name Type Attributes Description
dataset Dataset

RDF-Ext dataset

queryEntities Array

Entity URIs to start search from

options Object <optional>

Search options

Source:
Returns:

Search results with ranked nodes

Type
Object

runShallowPPR(graph, entryPoints, optionsopt) → {Object}

Run shallow PPR for quick traversal (2-3 iterations)

.

Run shallow PPR for quick traversal (2-3 iterations)

Parameters:
Name Type Attributes Description
graph Object

Graph representation

entryPoints Array

Entry point node URIs

options Object <optional>

Algorithm options

Source:
Returns:

Shallow PPR results

Type
Object

(async) runTargetedAnalysis(dataset, algorithms, optionsopt) → {Object}

Run targeted analysis for specific algorithms

.

Run targeted analysis for specific algorithms

Parameters:
Name Type Attributes Description
dataset Dataset

RDF-Ext dataset

algorithms Array

Array of algorithm names

options Object <optional>

Analysis options

Source:
Returns:

Targeted analysis results

Type
Object

(async) runVSOMAnalysis(dataset, embeddingHandler, optionsopt) → {Promise.<Object>}

Run VSOM analysis on dataset

.

Run VSOM analysis on dataset

Parameters:
Name Type Attributes Description
dataset Dataset

RDF dataset containing entities

embeddingHandler Object

Embedding handler for vector generation

options Object <optional>

Analysis options

Source:
Returns:

VSOM analysis results

Type
Promise.<Object>

sanitizeData()

Utility methods

.

Utility methods

Source:

sanitizeErrorMessage()

Utility methods

.

Utility methods

Source:

(async) saveIndex(indexPath, metadataPath)

Save index to file

.

Save index to file

Parameters:
Name Type Description
indexPath string

Path to save HNSW index

metadataPath string

Path to save metadata

Source:

(async) saveVectorIndex()

Save vector index to disk

.

Save vector index to disk

Source:

scoreByGraph()

Score corpuscles by graph connectivity

.

Score corpuscles by graph connectivity

Source:

scoreByKeywords()

Score corpuscles by keyword relevance

.

Score corpuscles by keyword relevance

Source:

Main dual search interface

.

Main dual search interface

Parameters:
Name Type Attributes Description
query string

Natural language search query

options Object <optional>

Search options

Source:
Returns:

Combined search results

Type
Object

Search for similar nodes

.

Search for similar nodes

Parameters:
Name Type Attributes Default Description
queryEmbedding Array.<number>

Query vector

k number <optional>
10

Number of results to return

options Object <optional>

Search options

Source:
Returns:

Search results with scores and metadata

Type
Array

Main search interface

.

Main search interface

Parameters:
Name Type Attributes Description
query string

Search query

options Object <optional>

Search options

Source:
Returns:

Search results

Type
Object

Search for similar items using basic string matching

.

Search for similar items using basic string matching

Parameters:
Name Type Default Description
queryEmbedding Array.<number>

Query embedding vector

limit number 10

Maximum number of results

threshold number 0.3

Similarity threshold (not used in this basic implementation)

Source:
Returns:

Search results

Type
Array.<Object>

searchByTypes(queryEmbedding, types, kopt) → {Object}

Search within specific ragno types

.

Search within specific ragno types

Parameters:
Name Type Attributes Default Description
queryEmbedding Array.<number>

Query vector

types Array.<string>

Ragno types to search within

k number <optional>
10

Number of results per type

Source:
Returns:

Results grouped by type

Type
Object

(async) searchContent()

Search content using semantic similarity

.

Search content using semantic similarity

Source:

(async) searchExact(query, optionsopt) → {Array}

Exact match search only

.

Exact match search only

Parameters:
Name Type Attributes Description
query string

Search query

options Object <optional>

Search options

Source:
Returns:

Exact match results

Type
Array

(async) searchGraph()

Search the knowledge graph

.

Search the knowledge graph

Source:

(async) searchSimilarity(query, optionsopt) → {Array}

Vector similarity search only

.

Vector similarity search only

Parameters:
Name Type Attributes Description
query string

Search query

options Object <optional>

Search options

Source:
Returns:

Vector similarity results

Type
Array

(async) searchTraversal(entityUris, optionsopt) → {Object}

PPR traversal search

.

PPR traversal search

Parameters:
Name Type Attributes Description
entityUris Array

Starting entity URIs

options Object <optional>

Traversal options

Source:
Returns:

PPR traversal results

Type
Object

seededRandom(seed) → {function}

Seeded random number generator for reproducible results

.

Seeded random number generator for reproducible results

Parameters:
Name Type Description
seed number

Random seed

Source:
Returns:

Random number generator function

Type
function

(async) select(params) → {Promise.<Object>}

Main selection method - selects corpuscles based on ZPT parameters

.

Main selection method - selects corpuscles based on ZPT parameters

Parameters:
Name Type Description
params Object

Raw ZPT navigation parameters

Source:
Returns:

Selection results with corpuscles and metadata

Type
Promise.<Object>

(async) selectByEmbedding()

Select corpuscles using embedding similarity

.

Select corpuscles using embedding similarity

Source:

(async) selectByGraph()

Select corpuscles using graph structure

.

Select corpuscles using graph structure

Source:

(async) selectByKeywords()

Select corpuscles using keyword matching

.

Select corpuscles using keyword matching

Source:

(async) selectByTemporal()

Select corpuscles using temporal ordering

.

Select corpuscles using temporal ordering

Source:

selectOptimalStrategy()

Select optimal chunking strategy based on content analysis

.

Select optimal chunking strategy based on content analysis

Source:

(async) semanticChunking()

Semantic boundary chunking strategy

.

Semantic boundary chunking strategy

Source:

sendError(res, status, message, detailopt)

Send error response

.

Send error response

Parameters:
Name Type Attributes Default Description
res Object

Express response object

status number

HTTP status code

message string

Error message

detail string <optional>
null

Error detail

Source:

sendSuccess(res, data)

Send successful response

.

Send successful response

Parameters:
Name Type Description
res Object

Express response object

data Object

Response data

Source:

setAllMetadata(metadata)

Set multiple metadata properties at once

.

Set multiple metadata properties at once

Parameters:
Name Type Description
metadata Object

Object with property/value pairs

Source:

setCategory(category)

Set the attribute category/type (more specific than subType)

.

Set the attribute category/type (more specific than subType)

Parameters:
Name Type Description
category string

Attribute category

Source:

setConfidence(confidence)

Set confidence score for this attribute

.

Set confidence score for this attribute

Parameters:
Name Type Description
confidence number

Confidence score (0-1)

Source:

setContent(content)

Set content for this element

.

Set content for this element

Parameters:
Name Type Description
content string

Text content

Source:

setCorpus(corpus)

Set corpus association for this attribute

.

Set corpus association for this attribute

Parameters:
Name Type Description
corpus string | NamedNode

Corpus URI or node

Source:

setCorpus(corpus)

Set corpus association for this entity

.

Set corpus association for this entity

Parameters:
Name Type Description
corpus string | NamedNode

Corpus URI or node

Source:

setCorpus(corpus)

Set corpus association for this unit

.

Set corpus association for this unit

Parameters:
Name Type Description
corpus string | NamedNode

Corpus URI or node

Source:

setEmbedding(embedding)

Set vector embedding for this unit

.

Set vector embedding for this unit

Parameters:
Name Type Description
embedding Array.<number>

Vector embedding

Source:

setEmbeddingHandler(embeddingHandler)

Set embedding handler for vector generation

.

Set embedding handler for vector generation

Parameters:
Name Type Description
embeddingHandler Object

Embedding handler instance

Source:

setEmbeddingHandler(embeddingHandler)

Set embedding handler

.

Set embedding handler

Parameters:
Name Type Description
embeddingHandler Object

Embedding handler instance

Source:

setEmbeddingHandler(embeddingHandler)

Set embedding handler

.

Set embedding handler

Parameters:
Name Type Description
embeddingHandler Object

Embedding handler instance

Source:

setEntity(entity)

Set the entity this attribute describes

.

Set the entity this attribute describes

Parameters:
Name Type Description
entity Entity | NamedNode | string

Entity reference

Source:

setEntryPoint(isEntryPoint)

Set whether this element is an entry point

.

Set whether this element is an entry point

Parameters:
Name Type Description
isEntryPoint boolean

Entry point status

Source:

setFirstSeen(timestamp)

Set first seen timestamp

.

Set first seen timestamp

Parameters:
Name Type Description
timestamp Date | string

First seen date

Source:

setFrequency(frequency)

Set frequency for this entity (usage tracking)

.

Set frequency for this entity (usage tracking)

Parameters:
Name Type Description
frequency number

Frequency count

Source:

setLLMHandler(llmHandler)

Set LLM handler for entity extraction

.

Set LLM handler for entity extraction

Parameters:
Name Type Description
llmHandler Object

LLM handler instance

Source:

setLLMHandler(llmHandler)

Set LLM handler

.

Set LLM handler

Parameters:
Name Type Description
llmHandler Object

LLM handler instance

Source:

setLLMHandler(llmHandler)

Set LLM handler

.

Set LLM handler

Parameters:
Name Type Description
llmHandler Object

LLM handler instance

Source:

setLanguage(language)

Set language for this attribute

.

Set language for this attribute

Parameters:
Name Type Description
language string

Language code (e.g., 'en', 'es')

Source:

setLanguage(language)

Set language for this unit

.

Set language for this unit

Parameters:
Name Type Description
language string

Language code (e.g., 'en', 'es')

Source:

setLastAccessed(timestamp)

Set last accessed timestamp

.

Set last accessed timestamp

Parameters:
Name Type Description
timestamp Date | string

Last accessed date

Source:

setLength(length)

Set length of this unit in characters

.

Set length of this unit in characters

Parameters:
Name Type Description
length number

Character length

Source:

setMetadataProperty(property, value)

Set a metadata property as an RDF triple

.

Set a metadata property as an RDF triple

Parameters:
Name Type Description
property string

Property name

value any

Property value

Source:

setName(name, langopt)

Set the name/label for this entity

.

Set the name/label for this entity

Parameters:
Name Type Attributes Default Description
name string

Entity name

lang string <optional>
'en'

Language tag

Source:

setNodeWeights(nodeIndex, weights)

Set weight vector for a specific map node

.

Set weight vector for a specific map node

Parameters:
Name Type Description
nodeIndex number

Index of the map node

weights Array

New weight vector

Source:

setPPRScore(score)

Set PPR score for this element

.

Set PPR score for this element

Parameters:
Name Type Description
score number

PPR score

Source:

setPosition(position)

Set position in source document

.

Set position in source document

Parameters:
Name Type Description
position number

Character position

Source:

setPrefLabel(label, langopt)

Set SKOS preferred label

.

Set SKOS preferred label

Parameters:
Name Type Attributes Default Description
label string

Label text

lang string <optional>
'en'

Language tag

Source:

setProvenance(provenance)

Set provenance information for this attribute

.

Set provenance information for this attribute

Parameters:
Name Type Description
provenance string | NamedNode

Provenance source URI or node

Source:

setRelationshipType(relType)

Set the relationship type (semantic classification)

.

Set the relationship type (semantic classification)

Parameters:
Name Type Description
relType string

Relationship type (e.g., "causal", "temporal", "part-of")

Source:

setSPARQLEndpoint(sparqlEndpoint)

Set SPARQL endpoint for exact matching

.

Set SPARQL endpoint for exact matching

Parameters:
Name Type Description
sparqlEndpoint string

SPARQL endpoint URL

Source:

setSPARQLEndpoint(sparqlEndpoint)

Set SPARQL endpoint

.

Set SPARQL endpoint

Parameters:
Name Type Description
sparqlEndpoint string

SPARQL endpoint URL

Source:

setSPARQLEndpoint(sparqlEndpoint)

Set SPARQL endpoint

.

Set SPARQL endpoint

Parameters:
Name Type Description
sparqlEndpoint string

SPARQL endpoint URL

Source:

setSimilarityScore(score)

Set similarity score for this element

.

Set similarity score for this element

Parameters:
Name Type Description
score number

Similarity score

Source:

setSourceDocument(source)

Set source document for this unit

.

Set source document for this unit

Parameters:
Name Type Description
source string | NamedNode

Source document URI or node

Source:

setSourceEntity(sourceEntity)

Set the source entity for this relationship

.

Set the source entity for this relationship

Parameters:
Name Type Description
sourceEntity RDFElement | NamedNode | string

Source entity

Source:

setSubType(subType)

Set sub-type for this element

.

Set sub-type for this element

Parameters:
Name Type Description
subType string

Sub-type identifier

Source:

setSummary(summary, langopt)

Set summary for this attribute (stored as SKOS definition)

.

Set summary for this attribute (stored as SKOS definition)

Parameters:
Name Type Attributes Default Description
summary string

Summary text

lang string <optional>
'en'

Language tag

Source:

setSummary(summary, langopt)

Set summary for this unit (stored as SKOS definition)

.

Set summary for this unit (stored as SKOS definition)

Parameters:
Name Type Attributes Default Description
summary string

Summary text

lang string <optional>
'en'

Language tag

Source:

setTargetEntity(targetEntity)

Set the target entity for this relationship

.

Set the target entity for this relationship

Parameters:
Name Type Description
targetEntity RDFElement | NamedNode | string

Target entity

Source:

setTemperature(temperature)

Parameters:
Name Type Description
temperature number
Source:
Throws:

If temperature is invalid

Type
Error

setTemporal(timestamp)

Set temporal information for this attribute (when it was true/relevant)

.

Set temporal information for this attribute (when it was true/relevant)

Parameters:
Name Type Description
timestamp Date | string

Temporal information

Source:

setText(text)

Set the main text content for this attribute

.

Set the main text content for this attribute

Parameters:
Name Type Description
text string

Text content

Source:

setText(text)

Set the main text content for this unit

.

Set the main text content for this unit

Parameters:
Name Type Description
text string

Text content

Source:

setVectorIndex(vectorIndex)

Set vector index for similarity search

.

Set vector index for similarity search

Parameters:
Name Type Description
vectorIndex VectorIndex

Vector index instance

Source:

setVectorIndex(vectorIndex)

Set vector index

.

Set vector index

Parameters:
Name Type Description
vectorIndex VectorIndex

Vector index instance

Source:

setWeight(weight)

Set the weight for this relationship

.

Set the weight for this relationship

Parameters:
Name Type Description
weight number

Relationship weight

Source:

setupDebug()

Debug message display

.

Debug message display

Source:

setupErrorHandling()

Setup global error handling

.

Setup global error handling

Source:

setupFailsafeTimeout()

Setup failsafe timeout for loading indicator

.

Setup failsafe timeout for loading indicator

Source:

showLoading()

Show/hide loading indicator

.

Show/hide loading indicator

Source:

shuffleArray(array) → {Array}

Shuffle array in place

.

Shuffle array in place

Parameters:
Name Type Description
array Array

Array to shuffle

Source:
Returns:

Shuffled array

Type
Array

shuffleArray(array) → {Array}

Shuffle array in place using Fisher-Yates algorithm

.

Shuffle array in place using Fisher-Yates algorithm

Parameters:
Name Type Description
array Array

Array to shuffle

Source:
Returns:

Shuffled array

Type
Array

(async, abstract) shutdown()

Shutdown the API instance

.

Shutdown the API instance

Source:

(async) shutdown()

Shutdown search system and cleanup resources

.

Shutdown search system and cleanup resources

Source:

(async) shutdownAll()

Shutdown all registered APIs

.

Shutdown all registered APIs

Source:

simpleHash()

Simple hash function for parameter caching

.

Simple hash function for parameter caching

Source:

(async) splitLargeSection()

Split large section into sub-chunks

.

Split large section into sub-chunks

Source:

(async) stopTraining()

Stop ongoing training

.

Stop ongoing training

Source:

stopTraining()

Stop training if currently running

.

Stop training if currently running

Source:

(async) store(data)

Store an entity or memory item with embedding

.

Store an entity or memory item with embedding

Parameters:
Name Type Description
data Object

Data to store (must have id, embedding, etc.)

Source:

(async) storeCommunity(community) → {Promise.<void>}

Store a ragno:Community with members and aggregation data

.

Store a ragno:Community with members and aggregation data

Parameters:
Name Type Description
community Object

Community data with members and statistics

Source:
Returns:
Type
Promise.<void>

storeEmbeddingInRDF(nodeUri, embeddingData, dataset, rdfManager)

Store embedding information in RDF dataset

.

Store embedding information in RDF dataset

Parameters:
Name Type Description
nodeUri string

Node URI

embeddingData Object

Embedding data

dataset Dataset

RDF dataset

rdfManager RDFGraphManager

RDF manager

Source:

(async) storeEntity(entity) → {Promise.<void>}

Store a ragno:Entity with full metadata and relationships

.

Store a ragno:Entity with full metadata and relationships

Parameters:
Name Type Description
entity Object

Entity data with id, label, type, embedding, etc.

Source:
Returns:
Type
Promise.<void>

(async, abstract) storeInteraction(interaction)

Store an interaction

.

Store an interaction

Parameters:
Name Type Description
interaction Object

Interaction data

Source:

(async) storeInteraction()

Store an interaction in memory

.

Store an interaction in memory

Source:

(async) storeInteraction()

Store interaction (inherited from BaseAPI)

.

Store interaction (inherited from BaseAPI)

Source:

(async) storeInteraction()

Store interaction (inherited from BaseAPI)

.

Store interaction (inherited from BaseAPI)

Source:

(async) storeInteraction()

Store interaction (inherited from BaseAPI)

.

Store interaction (inherited from BaseAPI)

Source:

(async) storeRelationship(relationship) → {Promise.<void>}

Store a ragno:Relationship with source, target and properties

.

Store a ragno:Relationship with source, target and properties

Parameters:
Name Type Description
relationship Object

Relationship data with source, target, type

Source:
Returns:
Type
Promise.<void>

(async) storeSemanticUnit(unit) → {Promise.<void>}

Store a ragno:SemanticUnit with content and relationships

.

Store a ragno:SemanticUnit with content and relationships

Parameters:
Name Type Description
unit Object

Semantic unit data with content, entities, embedding

Source:
Returns:
Type
Promise.<void>

(async) streamChatResponse()

Stream a chat response with memory context

.

Stream a chat response with memory context

Source:

summarizeContext()

Create a concise summary of interactions grouped by concept

.

Create a concise summary of interactions grouped by concept

Source:

summarizeFilters()

Utility methods

.

Utility methods

Source:

summarizeFilters()

Helper methods for specific formatting tasks

.

Helper methods for specific formatting tasks

Source:

supportsTilt(zoomLevel, tiltRepresentation) → {boolean}

Determine if zoom level supports a specific tilt representation

.

Determine if zoom level supports a specific tilt representation

Parameters:
Name Type Description
zoomLevel string

The zoom level

tiltRepresentation string

The tilt representation

Source:
Returns:

Whether the combination is supported

Type
boolean

toNTriples() → {string}

Export dataset to N-Triples format

.

Export dataset to N-Triples format

Source:
Returns:

N-Triples serialization

Type
string

toNTriples() → {string}

Export this element as N-Triples

.

Export this element as N-Triples

Source:
Returns:

N-Triples representation

Type
string

toSimpleObject() → {Object}

Convert to simple object representation (for backward compatibility)

.

Convert to simple object representation (for backward compatibility)

Source:
Returns:

Simple object representation

Type
Object

toSimpleObject() → {Object}

Convert to simple object representation (for RagnoMemoryStore compatibility)

.

Convert to simple object representation (for RagnoMemoryStore compatibility)

Source:
Returns:

Simple object representation

Type
Object

toSimpleObject() → {Object}

Convert to simple object representation (for backwards compatibility)

.

Convert to simple object representation (for backwards compatibility)

Source:
Returns:

Simple object representation

Type
Object

toSimpleObject() → {Object}

Convert to simple object representation (for backward compatibility)

.

Convert to simple object representation (for backward compatibility)

Source:
Returns:

Simple object representation

Type
Object

toTurtle() → {string}

Export this element as Turtle (simplified)

.

Export this element as Turtle (simplified)

Source:
Returns:

Turtle representation

Type
string

(async) tokenAwareChunking()

Token-aware chunking strategy

.

Token-aware chunking strategy

Source:

toroidalDistance(delta, size) → {number}

Calculate toroidal distance (shortest path around torus)

.

Calculate toroidal distance (shortest path around torus)

Parameters:
Name Type Description
delta number

Raw coordinate difference

size number

Size of the dimension

Source:
Returns:

Shortest toroidal distance

Type
number

touch()

Update last accessed timestamp to now

.

Update last accessed timestamp to now

Source:

trackActiveRequest()

Request tracking

.

Request tracking

Source:

(async) train(optionsopt) → {Promise.<Object>}

Train the VSOM on loaded data

.

Train the VSOM on loaded data

Parameters:
Name Type Attributes Description
options Object <optional>

Training options

Source:
Returns:

Training results

Type
Promise.<Object>

(async) train(vsomCore, topology, trainingData, callbacks) → {Object}

Execute complete training process

.

Execute complete training process

Parameters:
Name Type Description
vsomCore Object

VSOM core algorithm instance

topology Object

VSOM topology instance

trainingData Array

Array of training vectors

callbacks Object

Optional training callbacks

Source:
Returns:

Training results

Type
Object

(async) trainSOM()

Train a SOM instance

.

Train a SOM instance

Source:

(async) trainingStep(vsomCore, topology, trainingData, learningRate, neighborhoodRadius, neighborhoodFunction) → {Object}

Perform single training step

.

Perform single training step

Parameters:
Name Type Description
vsomCore Object

VSOM core algorithm instance

topology Object

VSOM topology instance

trainingData Array

Training data

learningRate number

Current learning rate

neighborhoodRadius number

Current neighborhood radius

neighborhoodFunction function

Neighborhood function

Source:
Returns:

Iteration results

Type
Object

(async) transform(projectedContent, selectionResult, transformOptions) → {Promise.<Object>}

Main transformation method - orchestrates the complete pipeline

.

Main transformation method - orchestrates the complete pipeline

Parameters:
Name Type Description
projectedContent Object

Content from TiltProjector

selectionResult Object

Result from CorpuscleSelector

transformOptions Object

Transformation parameters

Source:
Returns:

Complete transformation result

Type
Promise.<Object>

(async) traverseGraph(startNodeId, depth, options) → {Promise.<Object>}

Graph traversal query with configurable depth

.

Graph traversal query with configurable depth

Parameters:
Name Type Default Description
startNodeId string

Starting node URI

depth number 2

Maximum traversal depth

options Object

Traversal options (direction, relationTypes)

Source:
Returns:

Graph structure with nodes and edges

Type
Promise.<Object>

(async) unifiedSearch()

Main unified search that queries all available services and merges results

.

Main unified search that queries all available services and merges results

Source:

(async) unregister()

Remove and cleanup an API instance

.

Remove and cleanup an API instance

Source:

updateConfig()

Configuration methods

.

Configuration methods

Source:

updateConfig()

Update parser configuration

.

Update parser configuration

Source:

updateConfig()

Configuration methods

.

Configuration methods

Source:

updateGraph()

Override updateGraph to queue Ragno sync operations

.

Override updateGraph to queue Ragno sync operations

Source:

updateMetrics()

Metrics tracking

.

Metrics tracking

Source:

updateMetrics()

Update performance metrics

.

Update performance metrics

Source:

updateMetrics()

Metrics and monitoring

.

Metrics and monitoring

Source:

updateModified()

Update the modified timestamp

.

Update the modified timestamp

Source:

updateRequestStats(responseTime, type)

Update request statistics

.

Update request statistics

Parameters:
Name Type Default Description
responseTime number

Response time in ms

type string general

Request type

Source:

updateSearchStatistics(searchTime, exactResults, vectorResults, pprResults)

Update search statistics

.

Update search statistics

Parameters:
Name Type Description
searchTime number

Time taken for search

exactResults Array

Exact match results

vectorResults Array

Vector similarity results

pprResults Object

PPR traversal results

Source:

updateWeights(inputBatch, bmuIndices, learningRate, neighborhoodRadius, neighborhoodFunction)

Update weights for a batch of training samples

.

Update weights for a batch of training samples

Parameters:
Name Type Description
inputBatch Array

Batch of input vectors

bmuIndices Array

BMU indices for each input

learningRate number

Current learning rate

neighborhoodRadius number

Current neighborhood radius

neighborhoodFunction function

Neighborhood weight function

Source:

validate() → {Object}

Validate this attribute according to ragno ontology

.

Validate this attribute according to ragno ontology

Source:
Returns:

Validation result

Type
Object

validate() → {Object}

Validate this entity according to ragno ontology

.

Validate this entity according to ragno ontology

Source:
Returns:

Validation result

Type
Object

validate() → {Object}

Validate this relationship according to ragno ontology

.

Validate this relationship according to ragno ontology

Source:
Returns:

Validation result

Type
Object

validate() → {Object}

Validate this unit according to ragno ontology

.

Validate this unit according to ragno ontology

Source:
Returns:

Validation result

Type
Object

validate() → {Object}

Validate this element against ragno ontology constraints

.

Validate this element against ragno ontology constraints

Source:
Returns:

Validation result with errors array

Type
Object

validate(params) → {Object}

Validate complete ZPT parameter object

.

Validate complete ZPT parameter object

Parameters:
Name Type Description
params Object

Navigation parameters

Source:
Returns:

Validation result

Type
Object

validateCompatibility(zoomLevel, panFilters, tiltRepresentation) → {Object}

Validate zoom level compatibility with parameters

.

Validate zoom level compatibility with parameters

Parameters:
Name Type Description
zoomLevel string

The zoom level

panFilters Object

Pan filter parameters

tiltRepresentation string

Tilt representation

Source:
Returns:

Validation result

Type
Object

validateConfig()

Validate parser configuration

.

Validate parser configuration

Source:

validateConfiguration() → {Object}

Validate topology configuration

.

Validate topology configuration

Source:
Returns:

Validation result {valid: boolean, errors: Array}

Type
Object

validateContentType()

Request validators

.

Request validators

Source:

(async) validateCorpus() → {Promise.<Object>}

Get corpus health and statistics

.

Get corpus health and statistics

Source:
Returns:

Health check results with statistics

Type
Promise.<Object>

validateCriteria()

Validate selection criteria

.

Validate selection criteria

Source:

(async) validateDependencies()

Validate dependencies before initialization

.

Validate dependencies before initialization

Source:

validateGeographic()

Validate geographic filter

.

Validate geographic filter

Source:

(async) validateInput()

Pipeline stage implementations

.

Pipeline stage implementations

Source:

validateJsonStructure(data, expectedType, options) → {boolean}

Validate that parsed JSON matches expected structure

.

Validate that parsed JSON matches expected structure

Parameters:
Name Type Default Description
data any

Parsed JSON data

expectedType string array

'array' or 'object'

options Object

Validation options

Source:
Returns:
  • True if valid
Type
boolean

validateMetadata()

Validation methods

.

Validation methods

Source:

validateModel(model) → {boolean}

Parameters:
Name Type Description
model string
Source:
Returns:
Type
boolean

validateNormalized()

Validate that normalized parameters are complete

.

Validate that normalized parameters are complete

Source:

validateOptions()

Validate formatting options

.

Validate formatting options

Source:

validatePan()

Validate pan parameter

.

Validate pan parameter

Source:

validateQuery()

Validate that query can be executed

.

Validate that query can be executed

Source:

validateRagnoURI(uri, expectedType) → {boolean}

Validate that a URI follows ragno ontology patterns

.

Validate that a URI follows ragno ontology patterns

Parameters:
Name Type Description
uri string

URI to validate

expectedType string

Expected type (class, property, individual)

Source:
Returns:

True if valid

Type
boolean

(async) validateRequest()

Validate complete request structure

.

Validate complete request structure

Source:

validateSearchRequest(req) → {Object}

Validate search request

.

Validate search request

Parameters:
Name Type Description
req Object

Express request object

Source:
Returns:

Validation result

Type
Object

validateTemporal()

Validate temporal filter

.

Validate temporal filter

Source:

validateTilt()

Validate tilt parameter

.

Validate tilt parameter

Source:

validateTransform()

Validate transform parameter

.

Validate transform parameter

Source:

validateZoom()

Validate zoom parameter

.

Validate zoom parameter

Source:

(async) verifyComponentsReady()

Verify all components are ready after initialization

.

Verify all components are ready after initialization

Source:

(async) withRateLimit()

Execute a function with rate limiting and exponential backoff

.

Execute a function with rate limiting and exponential backoff

Source:

Type Definitions

ChatMessage

Language model provider interface

.

Language model provider interface

Type:
  • Object
Source: